TransformerEngine中融合注意力机制的正确使用方式
2025-07-01 16:02:32作者:宣利权Counsellor
理解注意力机制的不同输入格式
在TransformerEngine项目中,实现高效注意力计算是其核心功能之一。项目提供了两种主要的注意力计算后端:FlashAttention和FusedAttention。许多开发者在尝试使用这些功能时,可能会遇到关于输入格式和注意力掩码类型的困惑。
输入格式的选择
TransformerEngine支持两种主要的输入格式:
-
sbhd格式(序列长度×批次大小×头数×特征维度):
- 这是传统的Transformer输入格式
- 适用于标准的批次处理场景
- 需要配合padding掩码使用
-
thd格式(总令牌数×头数×特征维度):
- 更灵活的处理方式
- 适合处理拼接后的多个文档
- 需要配合cu_seqlens参数使用
常见误区与正确实践
一个常见的误区是开发者可能会错误地将拼接后的文档使用sbhd格式处理,而实际上应该使用thd格式。以下是正确使用thd格式的示例代码:
import torch
from transformer_engine.pytorch.attention import DotProductAttention
# 初始化参数
seqlen, batch_size, heads, kv_channels = 2048, 1, 16, 64
# 准备输入张量(thd格式)
q = torch.randn(seqlen * batch_size, heads, kv_channels,
dtype=torch.float16, device="cuda", requires_grad=True)
k = torch.randn_like(q)
v = torch.randn_like(q)
# 定义序列长度信息
cu_seqlens = torch.tensor([0, 300, 1100, 2048],
device="cuda", dtype=torch.int32)
# 创建注意力层
attention_layer = DotProductAttention(heads, kv_channels)
# 使用FlashAttention后端
output_flash = attention_layer(q, k, v,
qkv_format='thd',
attn_mask_type='padding',
cu_seqlens_q=cu_seqlens,
cu_seqlens_kv=cu_seqlens)
# 使用FusedAttention后端
output_fused = attention_layer(q, k, v,
qkv_format='thd',
attn_mask_type='padding',
cu_seqlens_q=cu_seqlens,
cu_seqlens_kv=cu_seqlens)
关键参数解析
- qkv_format:明确指定输入格式为'thd'
- attn_mask_type:必须设置为'padding'才能正确使用cu_seqlens
- cu_seqlens_q/cu_seqlens_kv:定义各个序列的边界位置
性能优化建议
- 对于拼接文档的场景,thd格式通常能提供更好的性能
- 确保cu_seqlens参数在GPU上且为int32类型
- 调试时可以设置NVTE_DEBUG_LEVEL环境变量查看后端选择信息
总结
正确理解和使用TransformerEngine中的注意力机制输入格式对于实现高效计算至关重要。开发者应根据具体场景选择合适的格式:标准批次处理使用sbhd格式,而拼接文档处理则应使用thd格式配合cu_seqlens参数。这种区分确保了注意力计算能正确应用所需的掩码,同时充分发挥硬件加速的优势。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
213
226
暂无简介
Dart
660
150
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
490
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
79
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1