TransformerEngine中融合注意力机制的正确使用方式
2025-07-01 10:28:25作者:宣利权Counsellor
理解注意力机制的不同输入格式
在TransformerEngine项目中,实现高效注意力计算是其核心功能之一。项目提供了两种主要的注意力计算后端:FlashAttention和FusedAttention。许多开发者在尝试使用这些功能时,可能会遇到关于输入格式和注意力掩码类型的困惑。
输入格式的选择
TransformerEngine支持两种主要的输入格式:
-
sbhd格式(序列长度×批次大小×头数×特征维度):
- 这是传统的Transformer输入格式
- 适用于标准的批次处理场景
- 需要配合padding掩码使用
-
thd格式(总令牌数×头数×特征维度):
- 更灵活的处理方式
- 适合处理拼接后的多个文档
- 需要配合cu_seqlens参数使用
常见误区与正确实践
一个常见的误区是开发者可能会错误地将拼接后的文档使用sbhd格式处理,而实际上应该使用thd格式。以下是正确使用thd格式的示例代码:
import torch
from transformer_engine.pytorch.attention import DotProductAttention
# 初始化参数
seqlen, batch_size, heads, kv_channels = 2048, 1, 16, 64
# 准备输入张量(thd格式)
q = torch.randn(seqlen * batch_size, heads, kv_channels,
dtype=torch.float16, device="cuda", requires_grad=True)
k = torch.randn_like(q)
v = torch.randn_like(q)
# 定义序列长度信息
cu_seqlens = torch.tensor([0, 300, 1100, 2048],
device="cuda", dtype=torch.int32)
# 创建注意力层
attention_layer = DotProductAttention(heads, kv_channels)
# 使用FlashAttention后端
output_flash = attention_layer(q, k, v,
qkv_format='thd',
attn_mask_type='padding',
cu_seqlens_q=cu_seqlens,
cu_seqlens_kv=cu_seqlens)
# 使用FusedAttention后端
output_fused = attention_layer(q, k, v,
qkv_format='thd',
attn_mask_type='padding',
cu_seqlens_q=cu_seqlens,
cu_seqlens_kv=cu_seqlens)
关键参数解析
- qkv_format:明确指定输入格式为'thd'
- attn_mask_type:必须设置为'padding'才能正确使用cu_seqlens
- cu_seqlens_q/cu_seqlens_kv:定义各个序列的边界位置
性能优化建议
- 对于拼接文档的场景,thd格式通常能提供更好的性能
- 确保cu_seqlens参数在GPU上且为int32类型
- 调试时可以设置NVTE_DEBUG_LEVEL环境变量查看后端选择信息
总结
正确理解和使用TransformerEngine中的注意力机制输入格式对于实现高效计算至关重要。开发者应根据具体场景选择合适的格式:标准批次处理使用sbhd格式,而拼接文档处理则应使用thd格式配合cu_seqlens参数。这种区分确保了注意力计算能正确应用所需的掩码,同时充分发挥硬件加速的优势。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
312
2.72 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
244
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
469
Ascend Extension for PyTorch
Python
151
177
暂无简介
Dart
605
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
231
83
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3 K
React Native鸿蒙化仓库
JavaScript
237
310