TRL v0.17.0发布:强化学习训练库的重大性能升级
项目简介
TRL(Transformer Reinforcement Learning)是Hugging Face推出的一个专注于使用强化学习技术微调大型语言模型的Python库。它提供了多种先进的训练方法,包括监督微调(SFT)、近端策略优化(PPO)、直接偏好优化(DPO)等,帮助研究人员和开发者高效地训练和优化语言模型。
核心升级内容
1. 性能大幅提升的GRPO训练策略
本次v0.17.0版本最显著的改进是针对GRPO(Generalized Reinforcement Policy Optimization)训练策略的性能优化,实现了高达10倍的训练速度提升。这一突破主要来自三个关键技术改进:
数据并行支持:vLLM服务器现在支持数据并行(DP),显著提高了生成速度,特别是对于较小模型。用户可以通过添加--data_parallel_size N
参数来启用这一功能。
批量生成优化:GRPO现在将全局批次组合成单个"有效批次",每个有效批次只进行一次生成请求。由于vLLM针对大批量进行了优化,这种方法显著提高了整体训练速度。
V1引擎支持:vLLM提供了两个版本的引擎(V0和V1),其中V1速度明显更快。TRL现在完全支持V1引擎,需要vLLM版本0.8.3或更高。
2. 训练稳定性增强
新版本引入了多项提高训练稳定性的功能:
Dropout控制:新增了禁用dropout的选项,这已被证明可以稳定训练。用户可以通过GRPO配置中的disable_dropout
参数来控制。
过长生过滤:新增了过滤过长样本的功能,通过屏蔽截断样本的损失来稳定学习过程。使用mask_truncated_completions=True
参数启用。
数据集顺序控制:GRPO训练器现在可以选择是否打乱训练数据集,这对于课程学习等需要保持数据顺序的场景非常有用。
3. 新型损失函数支持
v0.17.0版本引入了多种新型损失函数:
Dr. GRPO损失:基于最新研究提出的改进型损失函数,可通过loss_type="dr_grpo"
参数启用。
Liger GRPO损失:显著降低了损失计算的内存峰值,使用use_liger_loss=True
参数启用。
其他重要改进
错误修复与优化
- 修复了ORPO和CPO Trainer在多GPU环境下的挂起问题
- 改进了GRPO训练器从检查点恢复时的日志记录
- 修复了SFT中EOS与PAD标记相同时的掩码问题
- 解决了在线DPO在模型为DataParallel对象时的崩溃问题
- 修复了使用奖励模型和DeepSpeed ZeRO 3时的兼容性问题
功能增强
- 丰富了GRPO的日志记录,包括显示唯一提示和按公共前缀分组完成指标
- 增加了对Gemma 3 VLM模型的支持
- 改进了进度条显示,特别是当num_mini_batches > 1时
- 增加了对Ascend NPU的支持
技术影响与建议
这次更新使得TRL在大型语言模型训练方面迈上了一个新台阶。特别是GRPO训练策略的性能提升,使得研究人员和开发者能够以更低的成本、更快的速度进行模型训练和实验。
对于使用者来说,建议:
- 升级到vLLM 0.8.3或更高版本以充分利用V1引擎的性能优势
- 根据硬件配置合理设置数据并行大小以获得最佳性能
- 考虑使用新型损失函数和稳定性增强功能来改善训练效果
- 对于课程学习等特殊场景,可以利用新的数据集顺序控制功能
TRL v0.17.0的这些改进不仅提升了性能,也增强了稳定性和灵活性,为大规模语言模型的强化学习训练提供了更加强大的工具支持。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









