KEDA中scaling-modifier触发fallback时副本数波动问题分析
问题背景
在Kubernetes自动扩展工具KEDA中,当使用scaling-modifier功能时,如果其中一个scaler出现错误触发fallback机制,目标pod的副本数会出现异常波动现象,而不是稳定保持在fallback设定的值上。这个问题在KEDA 2.13.1版本中被发现并报告。
问题现象
正常情况下,当scaler出现错误时,系统应该将pod副本数稳定维持在用户配置的fallback值上。但实际观察到的现象是,副本数会在1和fallback值之间不断波动,导致系统稳定性受到影响。
技术分析
根本原因
经过深入分析,发现问题主要出在两个方面:
-
metrics提供机制:当没有fallback时,系统会提供一个复合metric;但当fallback触发时,系统却提供了分离的metrics,且这些metric值不等于fallback值。这些错误的metrics会触发HPA将副本数缩放到1。
-
fallback计算逻辑:在
doFallback()函数中存在一个关键bug,当scaling-modifier激活时,metricSpec.External.Target.AverageValue会变为0,导致无法正确计算fallback值。正确的做法应该是使用scaledObject.Spec.Advanced.ScalingModifiers.Target。
更深层次的问题
进一步分析发现,当用户设置了failureThreshold时,问题会更加复杂:
- 在失败次数达到阈值前,
doFallback()不会被调用 - 系统会继续向HPA提供错误的metrics
- 同时KEDA会尝试将目标缩放到fallback值
- 这导致副本数在错误值和fallback值之间持续波动,直到失败次数超过阈值
解决方案建议
针对这个问题,建议从以下几个方面进行修复:
-
metrics提供机制:确保在fallback情况下仍然提供正确的复合metric,其值应该等于fallback值。
-
fallback计算逻辑:修改
doFallback()函数,在scaling-modifier激活时使用正确的scaledObject.Spec.Advanced.ScalingModifiers.Target值。 -
failureThreshold处理:重新评估failureThreshold在复合scaler场景下的作用机制,可能需要调整错误报告策略,确保在达到阈值前也能提供合理的metrics。
技术影响
这个问题如果不解决,会对生产环境产生以下影响:
- 系统稳定性:pod副本数的持续波动会导致服务可用性下降
- 资源利用率:频繁的扩缩容会造成资源浪费
- 监控告警:异常的副本数变化可能触发误报
最佳实践建议
在使用KEDA的scaling-modifier功能时,建议:
- 仔细测试fallback机制在各种错误场景下的行为
- 暂时避免同时使用scaling-modifier和failureThreshold
- 密切关注pod副本数的变化趋势
- 考虑在关键生产环境升级到修复后的版本
这个问题展示了在复杂自动扩展系统中,各种功能组合可能产生的边缘情况,也提醒我们在设计系统时要充分考虑各种异常场景的处理逻辑。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C059
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00