KEDA中scaling-modifier触发fallback时副本数波动问题分析
问题背景
在Kubernetes自动扩展工具KEDA中,当使用scaling-modifier功能时,如果其中一个scaler出现错误触发fallback机制,目标pod的副本数会出现异常波动现象,而不是稳定保持在fallback设定的值上。这个问题在KEDA 2.13.1版本中被发现并报告。
问题现象
正常情况下,当scaler出现错误时,系统应该将pod副本数稳定维持在用户配置的fallback值上。但实际观察到的现象是,副本数会在1和fallback值之间不断波动,导致系统稳定性受到影响。
技术分析
根本原因
经过深入分析,发现问题主要出在两个方面:
-
metrics提供机制:当没有fallback时,系统会提供一个复合metric;但当fallback触发时,系统却提供了分离的metrics,且这些metric值不等于fallback值。这些错误的metrics会触发HPA将副本数缩放到1。
-
fallback计算逻辑:在
doFallback()函数中存在一个关键bug,当scaling-modifier激活时,metricSpec.External.Target.AverageValue会变为0,导致无法正确计算fallback值。正确的做法应该是使用scaledObject.Spec.Advanced.ScalingModifiers.Target。
更深层次的问题
进一步分析发现,当用户设置了failureThreshold时,问题会更加复杂:
- 在失败次数达到阈值前,
doFallback()不会被调用 - 系统会继续向HPA提供错误的metrics
- 同时KEDA会尝试将目标缩放到fallback值
- 这导致副本数在错误值和fallback值之间持续波动,直到失败次数超过阈值
解决方案建议
针对这个问题,建议从以下几个方面进行修复:
-
metrics提供机制:确保在fallback情况下仍然提供正确的复合metric,其值应该等于fallback值。
-
fallback计算逻辑:修改
doFallback()函数,在scaling-modifier激活时使用正确的scaledObject.Spec.Advanced.ScalingModifiers.Target值。 -
failureThreshold处理:重新评估failureThreshold在复合scaler场景下的作用机制,可能需要调整错误报告策略,确保在达到阈值前也能提供合理的metrics。
技术影响
这个问题如果不解决,会对生产环境产生以下影响:
- 系统稳定性:pod副本数的持续波动会导致服务可用性下降
- 资源利用率:频繁的扩缩容会造成资源浪费
- 监控告警:异常的副本数变化可能触发误报
最佳实践建议
在使用KEDA的scaling-modifier功能时,建议:
- 仔细测试fallback机制在各种错误场景下的行为
- 暂时避免同时使用scaling-modifier和failureThreshold
- 密切关注pod副本数的变化趋势
- 考虑在关键生产环境升级到修复后的版本
这个问题展示了在复杂自动扩展系统中,各种功能组合可能产生的边缘情况,也提醒我们在设计系统时要充分考虑各种异常场景的处理逻辑。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00