深度聆听:音频分类的深度学习实验
项目介绍
欢迎来到“深度聆听”——一个专注于利用深度学习进行音频分类的开放平台。本项目集成了多个Jupyter笔记本,每个都承载着独特的功能与使命,从音频特征提取到模型训练和预测,提供了一条完整的探索路径,使我们能更深入地理解声音的本质。
技术解析
1-us8k-ffn-extract-explore.ipynb 该笔记首先引领我们通过抽象的方式探索UrbanSound8K数据集中的音频文件,借助librosa库的强大能力将每段录音精简至193个关键数据点,准备为后续的FFN(前馈神经网络)输入。
2-us8k-ffn-train-predict.ipynb 接下来,我们利用TensorFlow和Keras框架构建并训练三层次的FFN,旨在识别预处理后的音频特征。这个阶段不仅评估了模型性能,还展示了如何对实时录音作出类别预测。
3-us8k-cnn-extract-train.ipynb 这里采用了更为详尽的方法来保存音频信息,输出的数据足以喂养经典的两层卷积神经网络(CNN),尽管庞大的数据量未被直接包含在仓库中,但代码已准备好帮您自行提取所需特征。
4-us8k-cnn-salamon.ipynb 灵感源自Salamon和Bello的研究成果,这一笔记实施了一个专门设计的CNN架构,用于进一步提升音频分类任务的表现。
5-ffbird-cnn.ipynb 转向自然界的韵律,这份笔记运用Salamon-Bello CNN对FreeField1010鸟鸣数据集进行了处理,目标是精确辨识鸟类歌声的存在与否。
7-us8k-rnn-extract-train.ipynb 最后,我们探索RNN(循环神经网络)在音频分类领域的潜力,以梅尔频率倒谱系数(MFCCs)作为输入特征,挑战时间序列信号的理解边界。
应用场景
无论是在城市噪声监测、音乐流派分类还是生物声学研究,“深度聆听”的工具和技术都能发挥关键作用,帮助研究人员和工程师解锁音频数据的深层含义,提高自动化声音识别系统的准确性和效率。
项目亮点
- 全面覆盖:“深度聆听”涵盖从数据预处理到模型训练与应用的整个工作流程,为初学者和专家提供了完整的学习环境。
- 灵活选择:多种深度学习模型供自由切换,无论是基于FFN的经典方法,还是更高级的CNN和RNN,总有一款适合您的需求。
- 真实案例: UrbanSound8K和FreeField1010等实际数据集的应用示例,让理论与实践紧密相连,确保解决方案的有效性。
- 社区共享:开放源码的精神贯穿始终,鼓励使用者提出问题、分享见解,在互动交流中共同进步。
加入“深度聆听”,开启您的音频分类之旅!
如果您有任何疑问或想要深入了解,请随时联系我 ([jaroncollis . com]),期待在声音的世界里遇见同样好奇的你。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00