在EmbedChain中正确配置Azure OpenAI部署的解决方案
2025-05-06 22:58:57作者:凌朦慧Richard
在使用EmbedChain项目时,许多开发者会遇到Azure OpenAI部署配置的问题。本文将通过一个典型错误案例,详细介绍如何正确配置Azure OpenAI服务,帮助开发者快速解决问题。
问题背景
当开发者尝试按照文档示例配置Azure OpenAI时,可能会遇到"Model not supports function calling"的错误提示。这个错误通常发生在使用litellm作为LLM提供者时,但实际上问题根源在于配置方式不当。
错误原因分析
错误信息表明系统无法识别Azure OpenAI部署模型支持函数调用功能。深入分析发现,这实际上是由于配置不完整导致的。开发者往往只配置了LLM部分,而忽略了embedder(嵌入器)的配置。
完整解决方案
正确的配置需要同时包含LLM和embedder两部分:
config = {
"llm": {
"provider": "azure_openai",
"config": {
"model": '<deployment-name-in-azure>',
"temperature": 0.1,
"max_tokens": 2000,
"azure_kwargs": {
"azure_deployment": DEPLOYMENT_NAME,
"api_version": AZURE_API_VERSION,
"azure_endpoint": AZURE_OPENAI_ENDPOINT,
"api_key": AZURE_OPENAI_API_KEY
}
}
},
"embedder": {
"provider": "azure_openai",
"config": {
"model": "text-embedding-3-large",
"azure_kwargs": {
"api_version": AZURE_API_VERSION,
"azure_deployment": "<your-embeddings-deployment-in-azure-openai>",
"azure_endpoint": AZURE_OPENAI_ENDPOINT,
"api_key": AZURE_OPENAI_API_KEY
}
}
}
}
配置要点说明
-
LLM配置:
- 使用"azure_openai"作为provider
- model参数应填写Azure门户中的部署名称
- azure_kwargs中需要包含完整的连接信息
-
Embedder配置:
- 同样使用"azure_openai"作为provider
- model参数应填写基础模型名称(如text-embedding-3-large)
- azure_deployment参数填写Azure门户中的嵌入模型部署名称
- 需要提供与LLM相同的API版本、终结点和密钥
常见误区
- 只配置LLM而忽略embedder
- 混淆model参数和azure_deployment参数
- 在embedder配置中使用部署名称作为model参数
- 遗漏必要的连接参数(api_version等)
最佳实践建议
- 始终检查配置是否包含LLM和embedder两部分
- 确保Azure门户中的部署名称与配置一致
- 对于生产环境,建议将敏感信息存储在环境变量中
- 测试配置前,先验证Azure OpenAI服务的连通性
通过以上配置方法和注意事项,开发者可以避免常见的Azure OpenAI集成问题,确保EmbedChain项目能够顺利运行。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C087
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
87
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
433
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19