VLMEvalKit项目中Qwen2.5-VL模型内存优化实践
问题背景
在使用VLMEvalKit项目评估Qwen2.5-VL-7B模型时,研究人员遇到了CUDA内存不足的问题。具体表现为在TextVQA_VAL数据集评估过程中出现torch.OutOfMemoryError错误,即使将批处理大小设置为1,内存占用也会在几个epoch后突然增加。
问题分析
该问题主要出现在使用Qwen2.5-VL-7B模型进行TextVQA_VAL数据集评估时。错误信息显示,系统尝试分配124.68GB内存,而GPU0的总容量仅为44.53GB,其中19.05GB可用。PyTorch已分配24.89GB内存,另有73.93MB保留但未分配。
值得注意的是,当设置attn_implementation='eager'时,模型可以完成TextVQA_VAL测试,但在几个epoch后仍会出现内存不足错误。而在其他数据集如MMbench和ChartQA上评估时,则不会出现内存问题。
解决方案
根据项目维护者的测试和经验,针对这一问题有以下几种解决方案:
-
升级硬件配置:使用具有更高显存的GPU(如80GB显存的显卡)可以完全避免此问题。测试表明,在80GB显存的GPU上运行Qwen2.5-VL-7B模型可以正常工作。
-
使用量化模型:对于显存有限的设备,可以考虑使用量化版本的模型。量化技术可以显著减少模型的内存占用,使其能够在资源有限的硬件上运行。
-
优化注意力机制实现:虽然设置
attn_implementation='eager'可以暂时缓解问题,但并非根本解决方案。可以尝试其他注意力实现方式或优化现有实现。
技术建议
对于大语言视觉模型(LVLM)的评估,特别是7B参数规模的模型,建议:
- 对于MMMU和MathVista等复杂数据集,尤其需要注意内存管理
- 在评估前充分了解模型的内存需求
- 考虑使用梯度检查点等技术减少内存占用
- 监控评估过程中的内存使用情况,及时发现潜在问题
结论
在资源有限的环境下评估大型视觉语言模型时,内存管理是一个关键挑战。通过合理选择硬件配置、使用量化技术或优化模型实现,可以有效解决内存不足的问题,确保评估工作的顺利进行。对于Qwen2.5-VL-7B这类模型,建议至少使用80GB显存的GPU进行评估,以获得最佳性能和稳定性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00