VLMEvalKit项目中Qwen2.5-VL模型内存优化实践
问题背景
在使用VLMEvalKit项目评估Qwen2.5-VL-7B模型时,研究人员遇到了CUDA内存不足的问题。具体表现为在TextVQA_VAL数据集评估过程中出现torch.OutOfMemoryError错误,即使将批处理大小设置为1,内存占用也会在几个epoch后突然增加。
问题分析
该问题主要出现在使用Qwen2.5-VL-7B模型进行TextVQA_VAL数据集评估时。错误信息显示,系统尝试分配124.68GB内存,而GPU0的总容量仅为44.53GB,其中19.05GB可用。PyTorch已分配24.89GB内存,另有73.93MB保留但未分配。
值得注意的是,当设置attn_implementation='eager'时,模型可以完成TextVQA_VAL测试,但在几个epoch后仍会出现内存不足错误。而在其他数据集如MMbench和ChartQA上评估时,则不会出现内存问题。
解决方案
根据项目维护者的测试和经验,针对这一问题有以下几种解决方案:
-
升级硬件配置:使用具有更高显存的GPU(如80GB显存的显卡)可以完全避免此问题。测试表明,在80GB显存的GPU上运行Qwen2.5-VL-7B模型可以正常工作。
-
使用量化模型:对于显存有限的设备,可以考虑使用量化版本的模型。量化技术可以显著减少模型的内存占用,使其能够在资源有限的硬件上运行。
-
优化注意力机制实现:虽然设置
attn_implementation='eager'可以暂时缓解问题,但并非根本解决方案。可以尝试其他注意力实现方式或优化现有实现。
技术建议
对于大语言视觉模型(LVLM)的评估,特别是7B参数规模的模型,建议:
- 对于MMMU和MathVista等复杂数据集,尤其需要注意内存管理
- 在评估前充分了解模型的内存需求
- 考虑使用梯度检查点等技术减少内存占用
- 监控评估过程中的内存使用情况,及时发现潜在问题
结论
在资源有限的环境下评估大型视觉语言模型时,内存管理是一个关键挑战。通过合理选择硬件配置、使用量化技术或优化模型实现,可以有效解决内存不足的问题,确保评估工作的顺利进行。对于Qwen2.5-VL-7B这类模型,建议至少使用80GB显存的GPU进行评估,以获得最佳性能和稳定性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
ops-transformer本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0136
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00