LMDeploy部署GLM4-9B-Chat-1M模型时的Tokenizer问题解析
在深度学习模型部署过程中,Tokenizer作为文本预处理的关键组件,其兼容性问题常常会导致部署失败。本文将深入分析使用LMDeploy工具部署GLM4-9B-Chat-1M模型时遇到的Tokenizer异常问题,并提供解决方案。
问题现象
当用户尝试通过LMDeploy的api_server命令部署GLM4-9B-Chat-1M模型时,系统抛出TypeError异常,提示ChatGLM4Tokenizer._pad()方法接收到了意外的关键字参数"padding_side"。这一错误发生在Tokenizer处理停止词(stop words)的环节,具体是在调用_encode_plus方法时传递了不兼容的参数。
技术背景
Tokenizer在Transformer架构中负责将原始文本转换为模型可处理的token ID序列。ChatGLM4Tokenizer作为GLM4系列模型的专用分词器,其实现可能与其他标准Tokenizer存在差异。padding_side参数通常用于控制序列填充的方向(左侧或右侧),但在ChatGLM4Tokenizer的实现中似乎没有正确处理这个参数。
根本原因
该问题的根源在于LMDeploy与transformers库版本之间的兼容性问题。较新版本的transformers库可能对Tokenizer接口进行了调整,而ChatGLM4Tokenizer尚未完全适配这些变更。特别是_pad方法的参数列表发生了变化,但Tokenizer实现没有相应更新。
解决方案
针对这一问题,目前有两种可行的解决方法:
-
降级transformers库版本:将transformers库回退到与ChatGLM4Tokenizer兼容的早期版本,可以暂时规避接口不匹配的问题。
-
等待LMDeploy更新:LMDeploy开发团队已经注意到这个问题,并在内部修复中。预计在下一版本发布时将包含对此问题的解决方案。
最佳实践建议
在部署大型语言模型时,建议开发者:
- 仔细检查模型所需的环境依赖版本
- 在隔离的环境中测试部署流程
- 关注官方文档的版本兼容性说明
- 对于长期上下文模型(如1M token的GLM4),确保系统资源充足
通过理解Tokenizer的工作原理和版本兼容性问题,开发者可以更高效地解决模型部署过程中的各类异常情况。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00