Textractor项目:Memories Off系列游戏特殊编码文本提取技术解析
2025-07-02 14:08:59作者:尤辰城Agatha
背景概述
在视觉小说游戏汉化领域,Textractor作为一款强大的文本提取工具,经常需要针对不同游戏引擎的特殊编码进行处理。近期在Memories Off系列游戏(包括《Memories Off ~Sorekara~》和《Memories Off 2nd》)的文本提取过程中,发现这些使用MAGES引擎的游戏采用了特殊的自定义编码表,导致常规的文本提取方法失效。
技术难点分析
MAGES引擎游戏的特殊性主要体现在:
- 使用非标准字符编码表
- 游戏文本在内存中的存储格式与常见编码不同
- 需要特定的hook点才能准确捕获文本数据
解决方案实现
经过技术分析,我们确定了以下关键解决方案:
1. 游戏特定hook点定位
通过逆向分析游戏可执行文件,找到了各版本游戏的核心文本处理函数:
- 《Memories Off -Innocent Fille-》hook点:sub_431430->4319AF
- 《Memories Off 2nd》hook点:sub_42DDB0->42E3B2
- 《Memories Off ~Sorekara~》hook点:sub_42D990->42DF92
2. 专用h-code开发
针对不同游戏版本开发了特定的h-code:
《Memories Off -Innocent Fille-》:
HHN-C:-18@319AF:Game.exe
《Memories Off 2nd》:
HHN-4:-18@2E3B2:game.exe
HHN-8:-18@2E3B2:game.exe
《Memories Off ~Sorekara~》:
HHN-4:-18@2DF92:game.exe
HHN-8:-18@2DF92:game.exe
3. 编码转换处理
由于游戏使用MAGES自定义编码表,需要配合Textractor的Replacer.xdll扩展功能,使用专门的编码转换表(SavedReplacements.txt)进行字符映射转换。
技术要点说明
-
寄存器使用分析:
- 不同游戏版本使用不同的寄存器存储文本数据(EDX/EAX/ECX)
- 都需要对EBP寄存器进行分割处理
-
偏移量计算:
- 所有hook点都采用-18的偏移量
- 这是经过多次测试确定的最佳偏移值
-
多版本兼容:
- 部分游戏需要同时使用多个h-code才能完整捕获所有文本
- 这与游戏内部的多重文本处理机制有关
实际应用建议
- 确保使用最新版Textractor
- 正确放置SavedReplacements.txt文件
- 根据游戏版本选择对应的h-code组合
- 对于hook失败的情况,建议提供游戏主程序进行进一步分析
总结
通过对MAGES引擎的深入分析和特定hook点的开发,成功解决了Memories Off系列游戏的文本提取难题。这一解决方案不仅适用于上述游戏,其技术思路也可为其他使用相同引擎的游戏提供参考。未来随着游戏引擎的更新,可能需要进一步调整hook策略和编码转换方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319