Redisson中PubSub消息解码异常问题解析与解决方案
问题背景
在使用Redisson 3.25.2版本进行Redis PubSub消息订阅时,开发者遇到了一个常见的解码异常问题。当通过Redis CLI发布字符串消息到指定频道后,Redisson客户端在接收消息时抛出了Kryo解码异常,提示"Encountered unregistered class ID: 75"的错误。
异常分析
从技术角度来看,这个问题的根源在于Redisson默认使用的编解码器与消息格式不匹配。Redisson默认配置了Kryo5Codec作为编解码器,而Kryo是一种二进制序列化框架,它期望处理的是Java对象而非原始字符串。
当Redis CLI发布纯文本消息时,Redisson客户端尝试用Kryo解码器来解析这些消息,由于Kryo无法识别纯文本消息的格式,因此抛出了类ID未注册的异常。
解决方案
针对这个问题,最直接的解决方案是指定使用StringCodec编解码器来替代默认的Kryo5Codec。StringCodec专门用于处理字符串类型的数据,与Redis CLI发布的纯文本消息格式完全兼容。
具体实现方式如下:
// 获取主题时显式指定StringCodec
final RTopic topic = redissonClient.getTopic("demoPubSubTopic", StringCodec.INSTANCE);
topic.addListener(String.class, (channel, message) -> {
log.info("RECEIVED MESSAGE. Message: {}", message);
});
深入理解
-
Redisson编解码器机制: Redisson提供了多种编解码器实现,包括Kryo、Jackson、MsgPack等,用于在不同场景下序列化和反序列化数据。理解编解码器的工作原理对于正确使用Redisson至关重要。
-
编解码器选择原则:
- 当处理Java对象时,可以使用Kryo或Jackson等对象编解码器
- 当处理纯文本或简单数据类型时,应使用StringCodec
- 跨语言场景下,考虑使用JSON或MsgPack等通用格式
-
性能考量: StringCodec相比Kryo等二进制编解码器在字符串处理上更高效,因为它不需要进行复杂的对象序列化/反序列化操作。
最佳实践
- 明确消息格式:在设计PubSub系统时,应该预先确定消息的格式和编解码方式。
- 统一客户端配置:确保生产者和消费者使用相同的编解码器配置。
- 异常处理:在消息监听器中添加适当的异常处理逻辑,避免因单条消息解码失败影响整个订阅。
- 性能测试:对于高吞吐量场景,应该对不同编解码器进行性能测试,选择最适合的解决方案。
总结
Redisson作为功能强大的Redis Java客户端,提供了灵活的编解码器机制来适应不同场景。理解并正确配置编解码器是使用Redisson进行高效开发的关键。当处理简单文本消息时,使用StringCodec是最直接有效的解决方案,可以避免不必要的序列化/反序列化开销和兼容性问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01