DeepAffinity 开源项目使用教程
1. 项目介绍
DeepAffinity 是一个用于预测蛋白质-化合物亲和力的开源项目。该项目利用深度学习技术,特别是结合了递归神经网络(RNN)和卷积神经网络(CNN)的半监督学习模型,来预测化合物与蛋白质之间的相互作用。DeepAffinity 不仅能够提供高精度的预测,还通过引入注意力机制来增强模型的可解释性,帮助研究人员理解化合物与蛋白质之间的相互作用机制。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- Python 3.6
- TensorFlow 1.1
- TFLearn 0.3
- Scikit-learn 0.19
- Anaconda 3/5.0.0.1
您可以通过以下命令创建并激活项目所需的环境:
conda env create -n deepaffinity_env -f environment.yml
conda activate deepaffinity_env
2.2 下载项目
使用 Git 克隆项目到本地:
git clone https://github.com/Shen-Lab/DeepAffinity.git
cd DeepAffinity
2.3 数据准备
DeepAffinity 需要特定的数据集来进行训练和测试。您可以从项目的 GitHub 页面下载预训练的模型和数据集。
2.4 模型训练
使用以下命令启动模型的训练过程:
python train.py --data_dir /path/to/data --train_dir /path/to/checkpoints
2.5 模型测试
训练完成后,您可以使用以下命令对模型进行测试:
python test.py --data_dir /path/to/test_data --checkpoint_dir /path/to/checkpoints
3. 应用案例和最佳实践
3.1 药物发现
DeepAffinity 在药物发现领域有着广泛的应用。通过预测化合物与蛋白质的亲和力,研究人员可以快速筛选出潜在的药物候选物,从而加速药物开发过程。
3.2 生物标志物识别
在生物标志物识别中,DeepAffinity 可以帮助研究人员理解特定蛋白质与化合物之间的相互作用,从而识别出潜在的生物标志物。
3.3 个性化医疗
通过预测不同个体中蛋白质与化合物的相互作用,DeepAffinity 可以为个性化医疗提供支持,帮助医生为患者选择最合适的治疗方案。
4. 典型生态项目
4.1 DeepChem
DeepChem 是一个开源的化学信息学工具包,提供了丰富的深度学习模型和工具,用于化学和生物信息学研究。DeepAffinity 可以与 DeepChem 结合使用,进一步提升化合物与蛋白质相互作用的预测能力。
4.2 RDKit
RDKit 是一个开源的化学信息学库,提供了处理化学结构和数据的工具。DeepAffinity 可以利用 RDKit 进行化合物数据的预处理和分析。
4.3 PyTorch
虽然 DeepAffinity 主要基于 TensorFlow 开发,但 PyTorch 也是一个强大的深度学习框架。研究人员可以根据需要将 DeepAffinity 的模型迁移到 PyTorch 平台上,以利用 PyTorch 的灵活性和强大的社区支持。
通过以上步骤,您可以快速上手并使用 DeepAffinity 项目进行蛋白质-化合物亲和力的预测。希望这个教程对您有所帮助!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00