Axolotl项目中梯度累积导致损失值异常放大的问题分析
问题现象
在Axolotl深度学习训练框架中,用户报告了一个关于梯度累积(Gradient Accumulation)的异常现象。当使用不同的微批次大小(micro_batch_size)和梯度累积步数(gradient_accumulation_steps)组合时,训练过程中显示的损失值(loss)和梯度范数(grad_norm)出现了异常放大。
具体表现为:当配置为micro_batch_size=1且gradient_accumulation_steps=8时,损失值大约是micro_batch_size=8且gradient_accumulation_steps=1配置下的8倍。例如,前者初始损失约为83.7,最终降至50;而后者初始损失约为10.5,最终降至6.8。
技术背景
梯度累积是一种常用的训练技巧,特别是在显存受限的情况下。它通过多次前向传播和反向传播累积梯度,然后一次性更新模型参数,从而模拟更大批次训练的效果。理论上,无论采用micro_batch_size=8/GA_steps=1还是micro_batch_size=1/GA_steps=8,最终的有效批次大小都是8,训练行为应该相似。
问题根源
经过分析,这个问题源于梯度累积实现中的损失值计算方式。在梯度累积过程中,每个微批次的损失值被简单相加,而没有考虑累积步数的影响,导致显示的总损失值被错误地放大了累积步数的倍数。
这个问题实际上与Hugging Face Transformers库中的一个已知问题相关。在早期版本中,梯度累积时的损失计算没有正确归一化,导致显示的损失值偏高。这个问题已经在Transformers的后续版本中通过相关PR得到修复。
解决方案
对于遇到此问题的用户,有以下几种解决方案:
- 升级到最新版本的Transformers库,确保包含了相关修复
- 暂时忽略显示损失值的绝对值,关注损失曲线的相对变化趋势
- 手动调整损失值的显示逻辑,除以梯度累积步数进行归一化
验证结果
在Axolotl项目更新到最新版本并包含相关修复后,测试显示两种配置下的损失值范围已经恢复正常。如下图所示,不同批次大小和梯度累积步数组合下的训练曲线现在表现一致。
最佳实践建议
- 保持Axolotl和相关依赖库(如Transformers)为最新版本
- 在调整梯度累积参数时,注意监控训练指标的合理性
- 当发现异常指标时,可以通过简化配置进行问题排查
- 关注开源社区的更新和问题报告,及时获取修复方案
这个问题虽然不影响实际的模型训练效果(因为参数更新是正确的),但会影响训练监控和早期停止等依赖损失值的决策。通过及时更新和正确配置,用户可以避免此类显示问题带来的困扰。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00