Jellyseerr v2.6.0 版本发布:媒体管理与用户体验全面升级
Jellyseerr 是一个基于 Jellyfin/Emby 生态系统的媒体请求管理工具,它为用户提供了便捷的媒体内容请求、审批和管理功能。作为 Overseerr 的一个分支,Jellyseerr 特别针对 Jellyfin 用户进行了优化和功能增强。
核心功能改进
媒体内容过滤与分类增强
本次 2.6.0 版本在内容过滤方面做出了显著改进。新增了内容认证/年龄分级过滤器,管理员现在可以根据不同年龄分级筛选内容,这对于家庭友好型媒体库管理特别有价值。同时,在个人详情页面增加了媒体类型过滤功能,用户可以更精确地查看演员或导演参与的特定类型作品。
黑名单功能也得到了加强,现在系统可以自动将带有黑名单标签的媒体添加到黑名单中。更智能的是,对于管理员用户,黑名单项目会自动从发现页面隐藏,既保持了界面的整洁,又不影响管理员对黑名单内容的管理。
通知系统优化
通知系统是本版本的另一大亮点。新增了对 ntfy 的原生支持,这是一种轻量级的推送通知服务。Gotify 通知现在支持优先级设置,而 Discord 通知则在待审批请求中加入了直接链接,提高了管理效率。Pushover 通知的声音设置问题也得到了修复,确保用户偏好能够正确保存。
技术架构改进
缓存机制优化
图像缓存系统进行了全面升级。新增了对 TVDB 图像的缓存支持,同时修复了 TMDB 部分图像的缓存缺失问题。头像缓存文件夹的创建问题也得到了解决,确保了用户头像能够正确加载和缓存。
数据库与排序逻辑
PostgreSQL 用户将受益于 TIMESTAMPTZ 类型的使用改进,问题评论现在会按照从旧到新的正确顺序显示。媒体请求中的季数排序问题也得到了修复,确保季数按自然顺序排列而非字母顺序。
用户体验提升
界面与交互优化
请求列表现在支持媒体类型过滤,让用户能更快找到特定类型的请求。季节徽章的顺序显示问题被修复,界面更加一致。移动端的人物媒体类型过滤器也进行了优化,确保在不同设备上体验一致。
配置灵活性
用户现在可以配置图表探针,根据自身需求调整系统监控的精细度。视频分享平台现在可配置,方便在不同地区的用户访问适合的视频实例。Markdown 换行支持也被引入,改善了多行文本的显示效果。
安全与稳定性
用户设置中的电子邮件检查逻辑得到改进,系统现在会正确排除当前用户检查重复邮箱。URL 验证也更加严格,能够正确处理空字段的情况。Jellyfin 会话管理得到加强,确保在 Jellyseerr 登出时清理相关会话。
总结
Jellyseerr v2.6.0 版本在媒体管理、通知系统、缓存机制和用户体验等多个维度进行了全面升级。这些改进不仅提高了系统的稳定性和功能性,也为管理员和普通用户带来了更加流畅和高效的使用体验。特别是新增的内容过滤和分类功能,使得媒体库管理更加精细化和个性化,满足了不同用户群体的需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00