LangGraph项目新增加密序列化功能解析
2025-06-03 20:20:55作者:俞予舒Fleming
LangGraph项目简介
LangGraph是一个用于构建和运行基于语言模型的工作流和状态机的Python库。它提供了强大的检查点(checkpoint)功能,能够保存和恢复工作流的状态,这对于构建复杂的语言模型应用至关重要。检查点机制允许开发者在流程中断后能够从中断点恢复,而不必重新开始整个流程。
加密序列化功能的引入
在最新发布的2.0.21版本中,LangGraph为检查点系统增加了重要的安全功能——加密序列化支持。这一功能通过两个核心组件实现:
1. CipherProtocol加密协议接口
CipherProtocol定义了一个标准的加密解密接口,包含两个关键方法:
encrypt(plaintext: bytes) -> bytes
: 将明文数据加密为密文decrypt(ciphertext: bytes) -> bytes
: 将密文数据解密回明文
这个协议接口的设计允许开发者灵活地实现不同的加密算法,同时保持与序列化系统的兼容性。
2. EncryptedSerializer加密序列化器
EncryptedSerializer是这一版本的核心新增功能,它实现了SerializerProtocol接口,并添加了加密层。其主要特点包括:
- 加密透明性:在底层序列化器(默认使用JsonPlusSerializer)的基础上自动添加加密/解密层
- AES加密支持:提供了便捷的工厂方法
from_pycryptodome_aes
,使用pycryptodome库实现AES加密 - 灵活的密钥配置:
- 支持通过环境变量
LANGGRAPH_AES_KEY
设置密钥 - 也支持直接传入密钥参数
- 支持通过环境变量
- 向后兼容:能够处理现有的未加密序列化数据,实现平滑过渡
技术实现细节
在实际使用中,EncryptedSerializer的工作流程如下:
-
序列化过程:
- 首先使用底层序列化器(如JsonPlusSerializer)将对象转换为字节流
- 然后使用配置的加密算法对字节流进行加密
- 最终输出加密后的数据
-
反序列化过程:
- 首先尝试解密输入数据
- 如果解密失败(可能是未加密的旧数据),则直接进行反序列化
- 解密成功后,使用底层序列化器将字节流还原为对象
这种设计既保证了新数据的安全性,又兼容了历史数据的读取需求。
应用场景与最佳实践
加密序列化功能特别适用于以下场景:
- 敏感数据处理:当工作流中涉及API密钥、用户隐私数据等敏感信息时
- 合规性要求:需要满足数据保护法规(如GDPR)的应用场景
- 分布式系统:在多节点环境中安全地共享检查点数据
使用建议:
- 在生产环境中,建议通过环境变量设置加密密钥,避免密钥硬编码
- 定期轮换加密密钥以增强安全性
- 对于已有未加密数据,可以先读取后重新保存为加密格式
总结
LangGraph 2.0.21引入的加密序列化功能为开发者提供了更安全的数据持久化方案,使得检查点机制不仅具备状态恢复能力,还能满足数据安全性的要求。这一功能的实现体现了LangGraph项目对生产环境需求的深入理解,为构建企业级语言模型应用提供了更坚实的基础设施支持。
随着AI应用的普及,数据安全性将变得越来越重要,LangGraph在这一方向的创新值得开发者关注和采用。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp英语课程填空题提示缺失问题分析3 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 4 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp博客页面工作坊中的断言方法优化建议8 freeCodeCamp论坛排行榜项目中的错误日志规范要求9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
94

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399