少样本增量学习:持续进化的分类器(CEC-CVPR2021)实战指南
2024-08-17 23:32:21作者:姚月梅Lane
项目介绍
该项目是基于PyTorch实现的CVPR 2021论文《少样本增量学习与持续进化的分类器》的代码库。作者提出的方法在几个基准数据集上显著超越了基线,特别是在Caltech-USCD Birds-200-2011(CUB200)上设立了新的状态-of-the-art成绩。该方法旨在解决增量学习中的少样本识别挑战,通过让分类器随新类别的加入而持续进化。
项目快速启动
环境准备
确保你的开发环境已安装Python和PyTorch。此外,你需要安装相关依赖,可以通过阅读项目中的requirements.txt文件或直接查看代码中导入的库来确定具体依赖项。
数据准备
-
下载数据集:
- 对于Mini-ImageNet和CUB_200_2011,你需要分别下载
miniimagenet.tar和CUB_200_2011.tgz文件。 - 解压到项目指定的数据目录下,例如:
$ mkdir -p data && cd data $ wget <miniimagenet_download_link> $ tar -xvf miniimagenet.tar $ wget <CUB_200_2011_download_link> $ tar -xvf CUB_200_2011.tgz
- 对于Mini-ImageNet和CUB_200_2011,你需要分别下载
-
预训练模型:
- 下载预训练模型文件夹
params并放置于项目适当路径下。
- 下载预训练模型文件夹
运行示例
以CIFAR-100为例,打开终端运行以下命令开始训练:
python train.py -project cec -dataset cifar100 -epochs_base 100 -episode_way 15 -episode_shot 1 -low_way 15 -low_shot 1 -lr_base 0.002 -lrg 0.0002 -step 20 -gamma 0.5 -gpu 0 1 2 3 -model_dir params/cifar100/session0_max_acc7455_cos.pth
请注意调整GPU编号以适应你的硬件配置。
应用案例和最佳实践
在实际应用中,此框架特别适用于那些需要逐步学习新类别的场景,如监控摄像头随着时间新增不同类型的物体识别。最佳实践包括:
- 精细调参:针对特定任务调整超参数,如-way和-shot的数量,以及学习率。
- 数据增强:增加训练数据多样性,提高模型泛化能力。
- 增量学习策略:定期评估模型性能,适时融合新旧知识,避免遗忘。
典型生态项目
虽然本指引主要聚焦于CEC-CVPR2021项目本身,但实际上,少样本学习和增量学习领域存在多个相关项目和框架。研究者通常会参考以下资源:
- MAML: 元学习的一种经典方法,适用于多种少样本学习任务。
- iCaRL: 增量学习的经典算法,专注于保留旧知识的同时学习新类。
- ProtoNets: 使用原型表示来进行少样本分类的另一种有效方法。
探索这些项目不仅可以深化对少样本学习和增量学习的理解,还能启发更多应用场景的实现。
以上即是对【https://github.com/icoz69/CEC-CVPR2021.git】项目的基本操作指南,希望对你深入理解和应用该项目有所帮助。记得在实验过程中参考项目文档和论文,以便更精确地实施细节。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 Python案例资源下载 - 从入门到精通的完整项目代码合集 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
248
2.46 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
297
暂无简介
Dart
547
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
596
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
410
Ascend Extension for PyTorch
Python
87
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
123