KServe v0.15.2 版本发布:增强模型服务安全性与稳定性
KServe 是一个开源的 Kubernetes 原生模型服务框架,专为生产环境中的机器学习模型部署而设计。它建立在 Knative 和 Istio 等云原生技术之上,提供了高性能、可扩展的模型服务能力,支持多种机器学习框架和自定义预测器。
近日,KServe 团队发布了 v0.15.2 版本,这是一个维护版本,主要聚焦于安全问题修复、功能增强和稳定性改进。本文将详细介绍该版本的重要更新内容及其技术价值。
安全问题修复
本次版本最关键的改进是修复了 CVE-2025-43859 安全问题。这是一个重要的安全补丁,体现了 KServe 团队对安全性的高度重视。在生产环境中部署机器学习模型时,安全性始终是首要考虑因素,这个修复确保了模型服务不会成为系统的安全薄弱环节。
功能增强
v0.15.2 版本默认启用了 ModelCar 功能。ModelCar 是 KServe 中的一个重要组件,它提供了模型加载和服务的核心功能。默认启用这一特性意味着新部署的 KServe 实例将自动获得更完善的模型服务能力,无需额外配置。
在预测器配置方面,新版本增加了 predictor_config 到 ModelServer 的初始化函数中。这一改进使得模型服务器的配置更加灵活,开发者可以更方便地定制预测器的行为,满足不同场景下的特殊需求。
稳定性改进
针对 Knative 自动扩缩容配置的读取顺序问题,新版本进行了重新设计。在 Kubernetes 环境中,配置的正确加载顺序对系统的稳定运行至关重要。这一改进确保了自动扩缩容配置能够被正确读取和应用,提升了系统在高负载情况下的稳定性。
HuggingFace 端到端测试的输出不匹配问题也得到了修复,并新增了对流式请求的测试支持。这些改进不仅解决了现有问题,还增强了框架对现代 AI 应用场景的支持能力,特别是那些需要实时流式响应的应用。
文档与工作流改进
在文档方面,新版本增强了安全文档,增加了详细的问题报告和预防机制说明。完善的文档对于开源项目的健康发展至关重要,它帮助用户更好地理解和使用框架的安全特性。
持续集成工作流也进行了优化,现在使用 ubuntu-latest 作为重新运行 PR 测试的基础环境。这一改进提高了开发流程的可靠性和一致性,有助于维护代码质量。
总结
KServe v0.15.2 虽然是一个维护版本,但其包含的改进对于生产环境部署具有重要意义。从安全问题修复到功能增强,再到稳定性和文档改进,这些变化共同提升了框架的整体质量和可靠性。对于正在使用 KServe 的用户,特别是那些关注安全性和稳定性的生产环境用户,升级到这个版本是值得推荐的。
随着机器学习模型服务需求的不断增长,KServe 持续演进,为开发者提供更强大、更可靠的部署解决方案。v0.15.2 版本的发布再次证明了该项目对质量和用户体验的承诺。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00