开源项目启动与配置教程
2025-05-19 12:26:20作者:管翌锬
1. 项目的目录结构及介绍
开源项目 training-code 的目录结构如下:
preparation/:包含数据预处理脚本。training/:存放训练相关的代码和启动脚本。.gitignore:定义了Git应该忽略的文件和目录。LICENSE:项目的许可证文件。README.md:项目的说明文档。requirements.txt:项目运行所需的Python依赖。requirements-recommended.txt:推荐安装的Python依赖,非必需。
每个目录和文件的具体作用如下:
preparation/tokenize_data_sft.py:用于对监督微调(Supervised Fine-Tuning, SFT)的数据进行分词。preparation/tokenize_data_uft.py:用于对无监督微调(Unsupervised Fine-Tuning, UFT)的数据进行分词。training/hf_trainer.py:基于HuggingFace的Trainer类的主训练脚本。.gitignore:包括例如环境文件、临时文件等不应该提交到版本控制中的文件。LICENSE:本项目采用AGPL-3.0许可证。README.md:介绍了项目的基本信息和如何使用。requirements.txt:包含了项目必需的依赖包,如transformers等。requirements-recommended.txt:包含了可以提高开发效率或功能的推荐依赖包,如wandb等。
2. 项目的启动文件介绍
项目的启动文件是 training/hf_trainer.py。该文件是训练过程的主要入口点,基于HuggingFace的Trainer类。以下是启动文件的一些基本使用方法:
export OMP_NUM_THREADS=4
export WANDB_PROJECT="project-name"
OUTPUT_DIR="/data/checkpoints/$WANDB_PROJECT"
MODEL_NAME='EleutherAI/pythia-410m-deduped'
TRAIN_DATASET="/data/$WANDB_PROJECT/train.pythia.arrow"
EVAL_DATASET="/data/$WANDB_PROJECT/eval.pythia.arrow"
BSZ=8
accelerate launch ./training/hf_trainer.py \
--model_name_or_path "$MODEL_NAME" \
--train_file "$TRAIN_DATASET" \
--eval_file "$EVAL_DATASET" \
--output_dir "$OUTPUT_DIR" \
--report_to "wandb" \
--do_train --do_eval \
--ddp_find_unused_parameters false \
--optim 'adamw_torch_fused' \
--seed 42 --data_seed 42 \
--logging_first_step true --logging_steps 1 \
--dataloader_num_workers 1 \
--per_device_train_batch_size "$BSZ" \
--per_device_eval_batch_size "$BSZ" \
--fp16 true \
--low_cpu_mem_usage true \
--evaluation_strategy "steps" \
--eval_steps 128 \
--save_strategy "steps" \
--save_steps 128 \
--save_total_limit 2 \
--gradient_accumulation_steps 8 \
--learning_rate 1.0e-5 \
--lr_scheduler_type 'cosine' \
--warmup_steps 64 \
$@
这段脚本设置了环境变量,定义了项目名称、输出目录、模型名称、训练和评估数据集路径、批量大小等参数,然后调用 hf_trainer.py 开始训练。
3. 项目的配置文件介绍
项目的配置文件包括 requirements.txt 和 requirements-recommended.txt。
requirements.txt:这个文件列出了项目运行所必需的Python包,可以通过以下命令安装:
pip install -r requirements.txt
requirements-recommended.txt:这个文件列出了对项目有帮助的推荐Python包,但不是必需的。可以通过以下命令安装:
pip install -r requirements-recommended.txt
确保在开始项目之前安装了所有必需的依赖项。推荐的依赖项可以根据需要安装,以增强项目的功能或监控。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248