开源项目启动与配置教程
2025-05-19 18:08:37作者:管翌锬
1. 项目的目录结构及介绍
开源项目 training-code
的目录结构如下:
preparation/
:包含数据预处理脚本。training/
:存放训练相关的代码和启动脚本。.gitignore
:定义了Git应该忽略的文件和目录。LICENSE
:项目的许可证文件。README.md
:项目的说明文档。requirements.txt
:项目运行所需的Python依赖。requirements-recommended.txt
:推荐安装的Python依赖,非必需。
每个目录和文件的具体作用如下:
preparation/tokenize_data_sft.py
:用于对监督微调(Supervised Fine-Tuning, SFT)的数据进行分词。preparation/tokenize_data_uft.py
:用于对无监督微调(Unsupervised Fine-Tuning, UFT)的数据进行分词。training/hf_trainer.py
:基于HuggingFace的Trainer类的主训练脚本。.gitignore
:包括例如环境文件、临时文件等不应该提交到版本控制中的文件。LICENSE
:本项目采用AGPL-3.0许可证。README.md
:介绍了项目的基本信息和如何使用。requirements.txt
:包含了项目必需的依赖包,如transformers等。requirements-recommended.txt
:包含了可以提高开发效率或功能的推荐依赖包,如wandb等。
2. 项目的启动文件介绍
项目的启动文件是 training/hf_trainer.py
。该文件是训练过程的主要入口点,基于HuggingFace的Trainer类。以下是启动文件的一些基本使用方法:
export OMP_NUM_THREADS=4
export WANDB_PROJECT="project-name"
OUTPUT_DIR="/data/checkpoints/$WANDB_PROJECT"
MODEL_NAME='EleutherAI/pythia-410m-deduped'
TRAIN_DATASET="/data/$WANDB_PROJECT/train.pythia.arrow"
EVAL_DATASET="/data/$WANDB_PROJECT/eval.pythia.arrow"
BSZ=8
accelerate launch ./training/hf_trainer.py \
--model_name_or_path "$MODEL_NAME" \
--train_file "$TRAIN_DATASET" \
--eval_file "$EVAL_DATASET" \
--output_dir "$OUTPUT_DIR" \
--report_to "wandb" \
--do_train --do_eval \
--ddp_find_unused_parameters false \
--optim 'adamw_torch_fused' \
--seed 42 --data_seed 42 \
--logging_first_step true --logging_steps 1 \
--dataloader_num_workers 1 \
--per_device_train_batch_size "$BSZ" \
--per_device_eval_batch_size "$BSZ" \
--fp16 true \
--low_cpu_mem_usage true \
--evaluation_strategy "steps" \
--eval_steps 128 \
--save_strategy "steps" \
--save_steps 128 \
--save_total_limit 2 \
--gradient_accumulation_steps 8 \
--learning_rate 1.0e-5 \
--lr_scheduler_type 'cosine' \
--warmup_steps 64 \
$@
这段脚本设置了环境变量,定义了项目名称、输出目录、模型名称、训练和评估数据集路径、批量大小等参数,然后调用 hf_trainer.py
开始训练。
3. 项目的配置文件介绍
项目的配置文件包括 requirements.txt
和 requirements-recommended.txt
。
requirements.txt
:这个文件列出了项目运行所必需的Python包,可以通过以下命令安装:
pip install -r requirements.txt
requirements-recommended.txt
:这个文件列出了对项目有帮助的推荐Python包,但不是必需的。可以通过以下命令安装:
pip install -r requirements-recommended.txt
确保在开始项目之前安装了所有必需的依赖项。推荐的依赖项可以根据需要安装,以增强项目的功能或监控。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401