对象检测开源项目教程
2025-04-18 16:09:36作者:郜逊炳
1. 项目目录结构及介绍
本项目是基于 TensorFlow 和 Keras 实现的对象检测项目,目录结构如下:
object-detection/
├── images/ # 存放图片数据
├── model_data/ # 存放模型数据和预训练权重
├── out/ # 输出结果文件夹
├── utils/ # 实用工具函数
├── yad2k/ # YOLOv2/3 转换工具
├── yolov3/ # YOLOv3 相关文件
├── .editorconfig # 编辑器配置文件
├── .gitignore # Git 忽略文件
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── requirements.txt # 项目依赖文件
├── test_ssd_mobilenet_v1.py # SSD-MobileNet v1 测试文件
├── test_ssdlite_mobilenet_v2.py # SSDLite-MobileNet v2 测试文件
├── test_tiny_yolo.py # tiny-YOLO 测试文件
└── test_yolov3.py # YOLOv3 测试文件
- images/: 存放用于训练和测试的图片数据。
- model_data/: 存放预训练的模型权重文件。
- out/: 模型运行后的输出结果,如检测结果图片。
- utils/: 存放项目中需要用到的辅助函数和类。
- yad2k/: 转换 YOLOv2/3 权重文件的工具。
- yolov3/: 与 YOLOv3 相关的源代码和配置文件。
- .editorconfig: 用于定义代码风格规范,统一不同开发者的编辑器设置。
- .gitignore: 指定 Git 应该忽略的文件和目录。
- LICENSE: 项目遵循的许可证信息。
- README.md: 项目的基本信息和说明。
- requirements.txt: 项目运行所依赖的 Python 包。
- test_ssd_mobilenet_v1.py: SSD-MobileNet v1 的测试脚本。
- test_ssdlite_mobilenet_v2.py: SSDLite-MobileNet v2 的测试脚本。
- test_tiny_yolo.py: tiny-YOLO 的测试脚本。
- test_yolov3.py: YOLOv3 的测试脚本。
2. 项目的启动文件介绍
项目提供了多个测试脚本,用于测试不同的模型。以下是一些主要的启动文件介绍:
- test_ssd_mobilenet_v1.py: 用于测试 SSD-MobileNet v1 模型的性能。
- test_ssdlite_mobilenet_v2.py: 用于测试 SSDLite-MobileNet v2 模型的性能。
- test_tiny_yolo.py: 用于测试 tiny-YOLO 模型的性能。
- test_yolov3.py: 用于测试 YOLOv3 模型的性能。
启动这些测试脚本的基本命令如下:
python3 test_ssd_mobilenet_v1.py
python3 test_ssdlite_mobilenet_v2.py
python3 test_tiny_yolo.py
python3 test_yolov3.py
在运行这些脚本之前,确保已经将相应的模型权重文件放置在 model_data/ 目录下。
3. 项目的配置文件介绍
本项目中的配置文件主要是模型相关的配置,具体如下:
- yolov3/config.py: YOLOv3 模型的配置文件,包含模型结构、训练参数等设置。
配置文件中可以设置模型的输入尺寸、锚点大小、类别数等参数。在开始训练或测试之前,可以根据自己的需求调整这些参数。
以上是对象检测开源项目的目录结构、启动文件和配置文件的简要介绍。在实际使用过程中,可能还需要对模型权重进行转换、数据集进行预处理等操作,具体可以参考项目官方文档和代码注释。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134