Text Embeddings Inference库中获取Token Embeddings的技术解析
背景介绍
Text Embeddings Inference是HuggingFace推出的一个高效文本嵌入推理库,它能够快速处理大规模文本嵌入任务。在实际应用中,开发者有时需要直接获取模型输出的token级别嵌入表示,而不是经过池化后的句子级嵌入。这种需求在实现"延迟分块"(late chunking)等高级文本处理技术时尤为重要。
Token Embeddings的重要性
Token级别的嵌入表示相比句子级嵌入具有更细粒度的信息,这使得它们在一些特定场景下非常有用:
- 延迟分块技术:可以在获得完整文档的token嵌入后,再进行灵活的分块处理,避免传统先分块再嵌入导致的信息割裂问题
- 序列标注任务:如命名实体识别等需要token级别预测的任务
- 可解释性分析:可以分析模型对每个token的表征方式
- 自定义池化策略:允许开发者实现自己的池化方法
技术实现方案
在Text Embeddings Inference库中,获取token embeddings可以通过以下方式实现:
使用embed_all端点
该库提供了专门的embed_all端点来获取完整的嵌入表示,包括token级别的嵌入。这个端点返回的是未经池化的原始嵌入输出,开发者可以从中提取所需的token embeddings。
与Sentence Transformers的对比
与Sentence Transformers库中直接通过output_value="token_embeddings"参数获取token嵌入的方式不同,Text Embeddings Inference采用了更灵活的端点设计。这种设计使得服务端可以更高效地处理不同类型的嵌入请求,同时保持API的简洁性。
应用场景建议
对于需要实现延迟分块技术的开发者,建议的工作流程是:
- 使用embed_all端点获取完整文本的token embeddings
- 在应用层实现自定义的分块逻辑
- 对分块后的token embeddings进行池化处理
- 将池化后的嵌入用于下游任务
这种方案相比传统的先分块再嵌入的方法,能够更好地保留跨分块的上下文信息,特别适合处理长文档场景。
性能考量
需要注意的是,获取token级别的嵌入会比直接获取句子级嵌入消耗更多的计算资源和带宽,因为返回的数据量会显著增加。在实际应用中,开发者应该根据具体需求权衡是否真的需要token级别的嵌入。
总结
Text Embeddings Inference库通过embed_all端点提供了获取token embeddings的能力,为开发者实现高级文本处理技术提供了基础支持。理解这一功能的特点和使用方式,可以帮助开发者在保持系统性能的同时,实现更灵活的文本处理流程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00