Text Embeddings Inference库中获取Token Embeddings的技术解析
背景介绍
Text Embeddings Inference是HuggingFace推出的一个高效文本嵌入推理库,它能够快速处理大规模文本嵌入任务。在实际应用中,开发者有时需要直接获取模型输出的token级别嵌入表示,而不是经过池化后的句子级嵌入。这种需求在实现"延迟分块"(late chunking)等高级文本处理技术时尤为重要。
Token Embeddings的重要性
Token级别的嵌入表示相比句子级嵌入具有更细粒度的信息,这使得它们在一些特定场景下非常有用:
- 延迟分块技术:可以在获得完整文档的token嵌入后,再进行灵活的分块处理,避免传统先分块再嵌入导致的信息割裂问题
- 序列标注任务:如命名实体识别等需要token级别预测的任务
- 可解释性分析:可以分析模型对每个token的表征方式
- 自定义池化策略:允许开发者实现自己的池化方法
技术实现方案
在Text Embeddings Inference库中,获取token embeddings可以通过以下方式实现:
使用embed_all端点
该库提供了专门的embed_all端点来获取完整的嵌入表示,包括token级别的嵌入。这个端点返回的是未经池化的原始嵌入输出,开发者可以从中提取所需的token embeddings。
与Sentence Transformers的对比
与Sentence Transformers库中直接通过output_value="token_embeddings"参数获取token嵌入的方式不同,Text Embeddings Inference采用了更灵活的端点设计。这种设计使得服务端可以更高效地处理不同类型的嵌入请求,同时保持API的简洁性。
应用场景建议
对于需要实现延迟分块技术的开发者,建议的工作流程是:
- 使用embed_all端点获取完整文本的token embeddings
- 在应用层实现自定义的分块逻辑
- 对分块后的token embeddings进行池化处理
- 将池化后的嵌入用于下游任务
这种方案相比传统的先分块再嵌入的方法,能够更好地保留跨分块的上下文信息,特别适合处理长文档场景。
性能考量
需要注意的是,获取token级别的嵌入会比直接获取句子级嵌入消耗更多的计算资源和带宽,因为返回的数据量会显著增加。在实际应用中,开发者应该根据具体需求权衡是否真的需要token级别的嵌入。
总结
Text Embeddings Inference库通过embed_all端点提供了获取token embeddings的能力,为开发者实现高级文本处理技术提供了基础支持。理解这一功能的特点和使用方式,可以帮助开发者在保持系统性能的同时,实现更灵活的文本处理流程。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00