Plutus项目1.42.0.0版本核心功能解析与优化
Plutus是Cardano区块链平台的智能合约开发框架,它基于Haskell语言构建,允许开发者编写安全可靠的智能合约。1.42.0.0版本带来了多项重要更新,包括核心功能的增强、性能优化以及新特性的引入。
加密库升级:从cryptonite到crypton
本次更新最显著的变化之一是加密库的切换。Plutus-core模块将底层加密实现从cryptonite迁移到了crypton库。crypton是一个与cryptonite兼容的替代品,这种切换属于无缝升级,不会影响现有合约的功能,但可能带来性能提升和安全性改进。
新增BuiltinArray类型及相关操作
1.42.0.0版本引入了一个重要的新类型——BuiltinArray,并提供了三个核心操作函数:
listToArray:将列表转换为BuiltinArray类型indexArray:通过索引访问BuiltinArray中的元素lengthOfArray:获取BuiltinArray的长度
这个新类型为智能合约开发提供了更高效的数据结构选择,特别是在需要频繁随机访问元素的场景下,相比传统的列表结构会有更好的性能表现。
DropList内置功能及成本模型
新版本增加了DropList内置功能及其对应的成本模型。DropList是一种特殊的数据结构操作,在智能合约中处理列表数据时能够提供更高效的操作方式。配套的成本模型确保了这些操作在区块链上执行时能够正确计算gas消耗,防止资源滥用。
Plutus IR优化:修复死代码消除缺陷
Plutus中间表示(Plutus IR)的死代码消除(DCE)过程存在一个潜在缺陷,可能导致错误地移除活跃的数据构造器或解构器。这个缺陷在1.42.0.0版本中得到了修复,确保了编译器优化过程不会意外删除必要的代码,提高了编译结果的可靠性。
PlutusTx模块功能增强
PlutusTx模块是智能合约开发的核心部分,本次更新带来了多项改进:
-
新增fix函数:提供了Plinth版本的
Data.Function.fix,为递归算法实现提供了基础支持。 -
空间-时间权衡工具:新增的
PlutusTx.Optimize.SpaceTime模块包含了一系列实用工具,特别是递归展开(recursion unrolling)功能,允许开发者在代码大小和执行速度之间做出权衡。 -
列表操作增强:
PlutusTx.Data.List模块新增了null函数和其他实用列表操作,丰富了基础数据结构的功能集。 -
内联优化改进:
PlutusTx.Optimize.Inline.inline函数现在支持内联局部绑定,为性能关键代码提供了更灵活的优化手段。 -
AsData性能提升:移除了产品类型代码生成中的构造函数ID检查,并避免创建严格的死绑定,显著提升了相关操作的执行效率。
编译器默认行为调整
Plutus编译器插件也进行了几项重要调整:
-
日志保留:
preserve-logging编译标志的默认值改为true,确保调试信息在默认情况下不会被优化掉。 -
固定点操作符内联:Plinth编译器现在默认内联固定点操作符,这一行为可以通过
no-inline-fix或conservative-optimisation选项关闭。 -
局部绑定内联:内联器现在能够处理带有INLINE编译指示的局部绑定,而不仅仅是顶层绑定,为细粒度优化提供了可能。
这些变化共同提升了Plutus智能合约的编译效率和运行时性能,同时为开发者提供了更多优化控制选项。1.42.0.0版本的更新主要集中在性能优化和新功能引入上,体现了Plutus项目持续改进的承诺,为Cardano生态系统的智能合约开发提供了更加强大和高效的工具链。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00