GLM-4V-9B模型量化实践:解决BFloat16与Half类型不匹配问题
2025-06-04 23:25:11作者:廉彬冶Miranda
引言
在深度学习模型部署过程中,模型量化是降低计算资源需求、提高推理效率的重要手段。本文将以GLM-4V-9B多模态大模型为例,探讨在使用bitsandbytes进行4位量化时遇到的"Input type (struct c10::BFloat16) and bias type (struct c10::Half) should be the same"错误及其解决方案。
问题背景
GLM-4V-9B是支持视觉问答(VQA)任务的多模态大语言模型。当开发者尝试使用bitsandbytes库对模型进行4位量化时,在图像处理阶段会遇到数据类型不匹配的错误。具体表现为卷积操作中输入的BFloat16类型与偏置的Half类型不一致。
错误分析
该错误通常发生在以下场景:
- 模型视觉部分(CNN)的权重被量化为4位
- 计算时使用了BFloat16精度(bnb_4bit_compute_dtype=torch.bfloat16)
- 但模型中的偏置参数保持了原始的Half(即Float16)精度
这种数据类型的不匹配导致卷积运算无法执行,特别是在使用不支持BFloat16的GPU硬件(如RTX 2060)时问题更为明显。
解决方案
经过实践验证,以下配置可以有效解决该问题:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16, # 使用Float16而非BFloat16
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4',
llm_int8_skip_modules=["output_layer"]
)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4v-9b",
torch_dtype=torch.float16, # 显式指定模型dtype
quantization_config=quantization_config,
trust_remote_code=True,
device_map="auto"
)
关键修改点:
- 将bnb_4bit_compute_dtype从bfloat16改为float16
- 在from_pretrained中显式指定torch_dtype=torch.float16
技术原理
这一解决方案的有效性基于以下技术原理:
- 硬件兼容性:Float16得到更广泛GPU的支持,包括较旧的显卡
- 精度一致性:确保模型所有部分(包括视觉编码器)使用相同的数据类型
- 量化稳定性:4位量化与Float16计算精度的组合在实践中表现稳定
实践建议
对于GLM-4V-9B模型的量化部署,建议:
- 优先使用Float16而非BFloat16,除非确定硬件完全支持
- 量化后使用model.dtype检查整体数据类型
- 对于多模态模型,特别注意视觉部分与语言部分的量化兼容性
- 在资源受限设备上,可以尝试调整bnb_4bit_quant_type为'fp4'以获得更好的稳定性
结论
通过对GLM-4V-9B模型量化过程的实践,我们发现数据类型的一致性在多模态模型量化中尤为重要。合理配置量化参数不仅可以避免运行时错误,还能保证模型性能。本文提供的解决方案已在多个硬件环境中验证有效,可作为同类模型量化的参考实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
146
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19