Micrometer项目中的指标类型变更与Prometheus客户端适配问题分析
背景概述
在Spring Boot 3.4.2版本升级过程中,开发人员发现原有的HTTP请求耗时百分位数指标(如P75、P95、P99)突然消失。这个问题实际上源于Micrometer 1.14版本对Prometheus注册表实现的重大变更,涉及到监控系统中两种核心指标类型的处理方式。
指标类型的技术差异
在监控系统中,存在两种主要的指标分布表示方法:
-
直方图(Histogram):将测量值划分到预定义的桶(bucket)中,记录每个桶中的观测值数量。Prometheus服务端可以根据这些桶数据计算分位数。
-
摘要(Summary):直接在客户端计算并暴露预定义的分位数(如P99),同时也会提供总计数和值总和。
在Micrometer早期版本中,即使用户配置了SLO(服务级别目标)作为直方图桶,系统仍会同时提供客户端计算的百分位数。但在1.14版本后,当检测到任何桶配置时,Micrometer会强制使用纯直方图模式,不再输出客户端计算的百分位数。
问题根源分析
这一变更主要是为了遵循Prometheus官方客户端的规范。Prometheus的指标规范中明确规定:
- 直方图必须只包含桶计数
- 摘要必须只包含分位数
- 不允许混合使用两种类型
Micrometer 1.14版本开始采用新的Prometheus客户端实现,严格遵守了这一规范,导致之前能同时获取两种指标的行为不再可用。
解决方案探讨
对于依赖客户端计算百分位数的用户,可以考虑以下几种方案:
-
完全迁移到服务端计算:利用Prometheus的
histogram_quantile函数基于直方图桶数据计算分位数。这种方法具有更好的可聚合性,但需要确保配置足够的桶以获得足够精度。 -
使用旧版客户端兼容:临时采用
micrometer-registry-prometheus-simpleclient依赖,但这只是过渡方案,因为该实现已被弃用。 -
分离指标采集:创建两个独立的Timer实例,一个配置SLO作为直方图,另一个配置百分位数作为摘要。例如:
Timer.builder("http.requests")
.serviceLevelObjectives(Duration.ofMillis(100))
.register(registry);
Timer.builder("http.requests.quantiles")
.publishPercentiles(0.95, 0.99)
.register(registry);
- 自定义注册表实现:扩展PrometheusMeterRegistry,修改指标输出逻辑,但这需要深入理解Micrometer和Prometheus的内部机制。
最佳实践建议
对于大多数新项目,建议采用纯直方图方案,因为:
- 服务端计算的分位数具有更好的可聚合性
- 直方图数据更易于进行跨实例、跨服务的统一分析
- 避免了客户端计算带来的性能开销和精度问题
配置示例:
management:
metrics:
distribution:
percentiles-histogram:
http.server.requests: true
slo:
http.server.requests: 100ms,300ms,500ms,1s,3s
这种配置将生成适合服务端分位数计算的详细直方图数据,同时保留关键的SLO桶用于告警和基本监控。
总结
Micrometer对Prometheus注册表的这一变更是为了更好地遵循行业标准和规范。虽然短期内可能需要调整监控策略,但长期来看,采用标准的直方图方案能够提供更可靠、更一致的监控体验。开发团队在升级监控组件时,应当充分了解这些底层变更,并相应调整自己的监控面板和告警规则。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00