Micrometer项目中的指标类型变更与Prometheus客户端适配问题分析
背景概述
在Spring Boot 3.4.2版本升级过程中,开发人员发现原有的HTTP请求耗时百分位数指标(如P75、P95、P99)突然消失。这个问题实际上源于Micrometer 1.14版本对Prometheus注册表实现的重大变更,涉及到监控系统中两种核心指标类型的处理方式。
指标类型的技术差异
在监控系统中,存在两种主要的指标分布表示方法:
-
直方图(Histogram):将测量值划分到预定义的桶(bucket)中,记录每个桶中的观测值数量。Prometheus服务端可以根据这些桶数据计算分位数。
-
摘要(Summary):直接在客户端计算并暴露预定义的分位数(如P99),同时也会提供总计数和值总和。
在Micrometer早期版本中,即使用户配置了SLO(服务级别目标)作为直方图桶,系统仍会同时提供客户端计算的百分位数。但在1.14版本后,当检测到任何桶配置时,Micrometer会强制使用纯直方图模式,不再输出客户端计算的百分位数。
问题根源分析
这一变更主要是为了遵循Prometheus官方客户端的规范。Prometheus的指标规范中明确规定:
- 直方图必须只包含桶计数
- 摘要必须只包含分位数
- 不允许混合使用两种类型
Micrometer 1.14版本开始采用新的Prometheus客户端实现,严格遵守了这一规范,导致之前能同时获取两种指标的行为不再可用。
解决方案探讨
对于依赖客户端计算百分位数的用户,可以考虑以下几种方案:
-
完全迁移到服务端计算:利用Prometheus的
histogram_quantile函数基于直方图桶数据计算分位数。这种方法具有更好的可聚合性,但需要确保配置足够的桶以获得足够精度。 -
使用旧版客户端兼容:临时采用
micrometer-registry-prometheus-simpleclient依赖,但这只是过渡方案,因为该实现已被弃用。 -
分离指标采集:创建两个独立的Timer实例,一个配置SLO作为直方图,另一个配置百分位数作为摘要。例如:
Timer.builder("http.requests")
.serviceLevelObjectives(Duration.ofMillis(100))
.register(registry);
Timer.builder("http.requests.quantiles")
.publishPercentiles(0.95, 0.99)
.register(registry);
- 自定义注册表实现:扩展PrometheusMeterRegistry,修改指标输出逻辑,但这需要深入理解Micrometer和Prometheus的内部机制。
最佳实践建议
对于大多数新项目,建议采用纯直方图方案,因为:
- 服务端计算的分位数具有更好的可聚合性
- 直方图数据更易于进行跨实例、跨服务的统一分析
- 避免了客户端计算带来的性能开销和精度问题
配置示例:
management:
metrics:
distribution:
percentiles-histogram:
http.server.requests: true
slo:
http.server.requests: 100ms,300ms,500ms,1s,3s
这种配置将生成适合服务端分位数计算的详细直方图数据,同时保留关键的SLO桶用于告警和基本监控。
总结
Micrometer对Prometheus注册表的这一变更是为了更好地遵循行业标准和规范。虽然短期内可能需要调整监控策略,但长期来看,采用标准的直方图方案能够提供更可靠、更一致的监控体验。开发团队在升级监控组件时,应当充分了解这些底层变更,并相应调整自己的监控面板和告警规则。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00