在Azure AI Studio中使用自有数据构建生成式AI应用
2025-06-19 23:18:50作者:魏侃纯Zoe
概述
本文将指导您如何在Azure AI Studio中创建一个能够利用自有数据的生成式AI应用。我们将使用检索增强生成(RAG)技术,将自定义数据源集成到生成式AI模型中,构建一个基于聊天的智能应用。
什么是检索增强生成(RAG)
检索增强生成(Retrieval Augmented Generation)是一种将外部知识源与大型语言模型结合的技术。RAG模式的工作流程如下:
- 用户提出问题
- 系统从知识库中检索相关信息
- 将检索到的信息与问题一起提供给语言模型
- 模型生成基于检索内容的回答
这种技术特别适合需要基于特定领域知识回答问题的场景,如客户服务、技术支持或本文中的旅游咨询应用。
环境准备
创建Azure AI Studio中心
- 登录Azure AI Studio门户
- 创建新的AI中心资源
- 配置项目设置:
- 选择订阅和资源组
- 设置区域(推荐使用East US 2或Sweden Central)
- 等待项目创建完成
模型部署
我们的解决方案需要部署两个关键模型:
-
文本嵌入模型(text-embedding-ada-002):
- 用于将文本数据向量化
- 便于高效索引和处理
- 配置50K TPM(每分钟令牌数)的速率限制
-
生成模型(gpt-4o):
- 用于基于数据生成自然语言回答
- 同样配置50K TPM的速率限制
提示:如果当前区域配额不足,可能需要选择其他区域创建资源。
数据准备与索引
添加数据源
- 下载旅游宣传册PDF文件集
- 在项目中上传这些文件
- 命名为"brochures"数据集
创建搜索索引
- 基于上传的数据创建新的Azure AI搜索资源
- 选择Basic定价层
- 确保与AI中心在同一区域
- 配置向量索引:
- 索引名称:brochures-index
- 使用text-embedding-ada-002模型进行嵌入
- 启用向量搜索
索引创建过程包括:
- 文档解析和分块
- 文本标记嵌入
- 搜索索引构建
- 资产注册
提示:索引创建可能需要一些时间,可以利用这段时间熟悉宣传册内容。
测试索引
在将索引集成到应用前,我们可以通过Playground进行测试:
- 选择Chat Playground
- 使用gpt-4o模型
- 测试两种场景:
- 不添加数据:询问"纽约有什么住宿选择?"
- 添加索引后:询问同样问题,比较回答差异
构建RAG客户端应用
应用配置
- 准备开发环境(Cloud Shell)
- 克隆包含示例代码的存储库
- 安装必要的SDK:
- Python:安装OpenAI SDK
- C#:添加Azure.AI.OpenAI包
- 配置应用设置文件:
- OpenAI终结点和API密钥
- 模型部署名称
- 搜索资源终结点和密钥
- 索引名称
代码解析
RAG应用的核心逻辑包括:
- 创建Azure OpenAI客户端
- 设置系统消息(定义聊天角色)
- 处理用户输入:
- 向量化查询文本
- 搜索索引获取相关内容
- 将检索结果与问题一起提交给模型
- 显示响应(包含来源引用)
关键点:
- 使用混合搜索(向量+关键词)提高相关性
- 维护聊天历史实现上下文感知
- 显示来源增强可信度
运行应用
- 启动应用
- 测试示例问题:
- "哪里可以看到建筑风格的度假地?"
- 后续问题:"那里有什么住宿选择?"
- 观察模型如何基于索引数据生成回答
清理资源
完成测试后,请删除以下资源以避免不必要费用:
- Azure AI搜索资源
- Azure AI资源
- 相关资源组
总结
通过本文,您已经学会了如何在Azure AI Studio中:
- 部署必要的AI模型
- 准备和索引自定义数据
- 构建基于RAG模式的生成式AI应用
- 测试和验证解决方案
这种技术可以扩展到各种业务场景,帮助组织利用自有数据增强AI应用的能力。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869