在Azure AI Studio中使用自有数据构建生成式AI应用
2025-06-19 06:43:38作者:魏侃纯Zoe
概述
本文将指导您如何在Azure AI Studio中创建一个能够利用自有数据的生成式AI应用。我们将使用检索增强生成(RAG)技术,将自定义数据源集成到生成式AI模型中,构建一个基于聊天的智能应用。
什么是检索增强生成(RAG)
检索增强生成(Retrieval Augmented Generation)是一种将外部知识源与大型语言模型结合的技术。RAG模式的工作流程如下:
- 用户提出问题
- 系统从知识库中检索相关信息
- 将检索到的信息与问题一起提供给语言模型
- 模型生成基于检索内容的回答
这种技术特别适合需要基于特定领域知识回答问题的场景,如客户服务、技术支持或本文中的旅游咨询应用。
环境准备
创建Azure AI Studio中心
- 登录Azure AI Studio门户
- 创建新的AI中心资源
- 配置项目设置:
- 选择订阅和资源组
- 设置区域(推荐使用East US 2或Sweden Central)
- 等待项目创建完成
模型部署
我们的解决方案需要部署两个关键模型:
-
文本嵌入模型(text-embedding-ada-002):
- 用于将文本数据向量化
- 便于高效索引和处理
- 配置50K TPM(每分钟令牌数)的速率限制
-
生成模型(gpt-4o):
- 用于基于数据生成自然语言回答
- 同样配置50K TPM的速率限制
提示:如果当前区域配额不足,可能需要选择其他区域创建资源。
数据准备与索引
添加数据源
- 下载旅游宣传册PDF文件集
- 在项目中上传这些文件
- 命名为"brochures"数据集
创建搜索索引
- 基于上传的数据创建新的Azure AI搜索资源
- 选择Basic定价层
- 确保与AI中心在同一区域
- 配置向量索引:
- 索引名称:brochures-index
- 使用text-embedding-ada-002模型进行嵌入
- 启用向量搜索
索引创建过程包括:
- 文档解析和分块
- 文本标记嵌入
- 搜索索引构建
- 资产注册
提示:索引创建可能需要一些时间,可以利用这段时间熟悉宣传册内容。
测试索引
在将索引集成到应用前,我们可以通过Playground进行测试:
- 选择Chat Playground
- 使用gpt-4o模型
- 测试两种场景:
- 不添加数据:询问"纽约有什么住宿选择?"
- 添加索引后:询问同样问题,比较回答差异
构建RAG客户端应用
应用配置
- 准备开发环境(Cloud Shell)
- 克隆包含示例代码的存储库
- 安装必要的SDK:
- Python:安装OpenAI SDK
- C#:添加Azure.AI.OpenAI包
- 配置应用设置文件:
- OpenAI终结点和API密钥
- 模型部署名称
- 搜索资源终结点和密钥
- 索引名称
代码解析
RAG应用的核心逻辑包括:
- 创建Azure OpenAI客户端
- 设置系统消息(定义聊天角色)
- 处理用户输入:
- 向量化查询文本
- 搜索索引获取相关内容
- 将检索结果与问题一起提交给模型
- 显示响应(包含来源引用)
关键点:
- 使用混合搜索(向量+关键词)提高相关性
- 维护聊天历史实现上下文感知
- 显示来源增强可信度
运行应用
- 启动应用
- 测试示例问题:
- "哪里可以看到建筑风格的度假地?"
- 后续问题:"那里有什么住宿选择?"
- 观察模型如何基于索引数据生成回答
清理资源
完成测试后,请删除以下资源以避免不必要费用:
- Azure AI搜索资源
- Azure AI资源
- 相关资源组
总结
通过本文,您已经学会了如何在Azure AI Studio中:
- 部署必要的AI模型
- 准备和索引自定义数据
- 构建基于RAG模式的生成式AI应用
- 测试和验证解决方案
这种技术可以扩展到各种业务场景,帮助组织利用自有数据增强AI应用的能力。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
ops-transformer本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
deepin linux kernel
C
23
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K
仓颉编译器源码及 cjdb 调试工具。
C++
112
78
暂无简介
Dart
532
117
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
76
106
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588
仓颉编程语言测试用例。
Cangjie
34
61
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648