在Azure AI Studio中使用自有数据构建生成式AI应用
2025-06-19 16:33:29作者:魏侃纯Zoe
概述
本文将指导您如何在Azure AI Studio中创建一个能够利用自有数据的生成式AI应用。我们将使用检索增强生成(RAG)技术,将自定义数据源集成到生成式AI模型中,构建一个基于聊天的智能应用。
什么是检索增强生成(RAG)
检索增强生成(Retrieval Augmented Generation)是一种将外部知识源与大型语言模型结合的技术。RAG模式的工作流程如下:
- 用户提出问题
- 系统从知识库中检索相关信息
- 将检索到的信息与问题一起提供给语言模型
- 模型生成基于检索内容的回答
这种技术特别适合需要基于特定领域知识回答问题的场景,如客户服务、技术支持或本文中的旅游咨询应用。
环境准备
创建Azure AI Studio中心
- 登录Azure AI Studio门户
- 创建新的AI中心资源
- 配置项目设置:
- 选择订阅和资源组
- 设置区域(推荐使用East US 2或Sweden Central)
- 等待项目创建完成
模型部署
我们的解决方案需要部署两个关键模型:
-
文本嵌入模型(text-embedding-ada-002):
- 用于将文本数据向量化
- 便于高效索引和处理
- 配置50K TPM(每分钟令牌数)的速率限制
-
生成模型(gpt-4o):
- 用于基于数据生成自然语言回答
- 同样配置50K TPM的速率限制
提示:如果当前区域配额不足,可能需要选择其他区域创建资源。
数据准备与索引
添加数据源
- 下载旅游宣传册PDF文件集
- 在项目中上传这些文件
- 命名为"brochures"数据集
创建搜索索引
- 基于上传的数据创建新的Azure AI搜索资源
- 选择Basic定价层
- 确保与AI中心在同一区域
- 配置向量索引:
- 索引名称:brochures-index
- 使用text-embedding-ada-002模型进行嵌入
- 启用向量搜索
索引创建过程包括:
- 文档解析和分块
- 文本标记嵌入
- 搜索索引构建
- 资产注册
提示:索引创建可能需要一些时间,可以利用这段时间熟悉宣传册内容。
测试索引
在将索引集成到应用前,我们可以通过Playground进行测试:
- 选择Chat Playground
- 使用gpt-4o模型
- 测试两种场景:
- 不添加数据:询问"纽约有什么住宿选择?"
- 添加索引后:询问同样问题,比较回答差异
构建RAG客户端应用
应用配置
- 准备开发环境(Cloud Shell)
- 克隆包含示例代码的存储库
- 安装必要的SDK:
- Python:安装OpenAI SDK
- C#:添加Azure.AI.OpenAI包
- 配置应用设置文件:
- OpenAI终结点和API密钥
- 模型部署名称
- 搜索资源终结点和密钥
- 索引名称
代码解析
RAG应用的核心逻辑包括:
- 创建Azure OpenAI客户端
- 设置系统消息(定义聊天角色)
- 处理用户输入:
- 向量化查询文本
- 搜索索引获取相关内容
- 将检索结果与问题一起提交给模型
- 显示响应(包含来源引用)
关键点:
- 使用混合搜索(向量+关键词)提高相关性
- 维护聊天历史实现上下文感知
- 显示来源增强可信度
运行应用
- 启动应用
- 测试示例问题:
- "哪里可以看到建筑风格的度假地?"
- 后续问题:"那里有什么住宿选择?"
- 观察模型如何基于索引数据生成回答
清理资源
完成测试后,请删除以下资源以避免不必要费用:
- Azure AI搜索资源
- Azure AI资源
- 相关资源组
总结
通过本文,您已经学会了如何在Azure AI Studio中:
- 部署必要的AI模型
- 准备和索引自定义数据
- 构建基于RAG模式的生成式AI应用
- 测试和验证解决方案
这种技术可以扩展到各种业务场景,帮助组织利用自有数据增强AI应用的能力。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
303
2.65 K
Ascend Extension for PyTorch
Python
131
156
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
197
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.45 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
206