在OpenAI Agents项目中实现视觉问答(VQA)功能的技术实践
2025-05-25 17:52:20作者:袁立春Spencer
背景与需求分析
视觉问答(Visual Question Answering)是AI领域的重要研究方向,它要求模型能够理解图像内容并回答相关问题。在OpenAI Agents项目中,开发者moseshu提出了如何利用agent处理VQA数据的需求,核心目标是让模型能够基于图片内容回答问题。
技术实现方案
基础API调用方式
原始方案采用了OpenAI API的标准调用格式:
import os
from openai import OpenAI
client = OpenAI(api_key="sk-pro.....", base_url="url")
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": "solve the question in the picture"},
{"type": "image_url", "image_url": {"url": "http://xxx/math1.webp"}}
]
}],
stream=True
)
项目推荐方案
仓库协作者提供了更符合OpenAI Agents项目规范的实现方式:
input=[
{
"role": "user",
"content": [
{"type": "input_image", "image_url": "..."},
{"type": "input_text", "text": "Describe the image"}
]
}
]
result = Runner.run(agent, input)
关键参数说明
- input_image:指定图像输入类型
- input_text:指定文本问题输入
- Runner.run:项目特有的执行方法
常见问题解决
图像细节参数问题
开发者尝试添加detail参数时遇到错误,正确的参数传递方式应为:
{
"type": "input_image",
"image_url": "...",
"detail": "des" # 直接作为同级参数
}
而非嵌套在image_url字典中,这是项目API设计时的特殊约定。
最佳实践建议
- 参数传递规范:注意项目特有的参数层级结构
- 错误处理:建议对图像URL有效性进行预验证
- 性能优化:对于大尺寸图片,可考虑先进行压缩处理
- 结果解析:使用项目提供的标准方法处理返回结果
技术延伸
这种实现方式体现了多模态AI处理的典型模式:
- 统一处理视觉和文本输入
- 保持与项目架构的一致性
- 提供可扩展的接口设计
开发者在使用时需要注意项目特定的API约定,这与标准OpenAI API的调用方式存在一定差异,但能更好地融入项目生态系统。
总结
OpenAI Agents项目为VQA任务提供了规范的实现框架,通过input_image和input_text的组合,开发者可以构建强大的视觉问答应用。理解项目的参数传递规范是成功集成的关键,这也体现了不同AI项目在API设计上的差异化特点。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5