在OpenAI Agents项目中实现视觉问答(VQA)功能的技术实践
2025-05-25 19:14:11作者:袁立春Spencer
背景与需求分析
视觉问答(Visual Question Answering)是AI领域的重要研究方向,它要求模型能够理解图像内容并回答相关问题。在OpenAI Agents项目中,开发者moseshu提出了如何利用agent处理VQA数据的需求,核心目标是让模型能够基于图片内容回答问题。
技术实现方案
基础API调用方式
原始方案采用了OpenAI API的标准调用格式:
import os
from openai import OpenAI
client = OpenAI(api_key="sk-pro.....", base_url="url")
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": "solve the question in the picture"},
{"type": "image_url", "image_url": {"url": "http://xxx/math1.webp"}}
]
}],
stream=True
)
项目推荐方案
仓库协作者提供了更符合OpenAI Agents项目规范的实现方式:
input=[
{
"role": "user",
"content": [
{"type": "input_image", "image_url": "..."},
{"type": "input_text", "text": "Describe the image"}
]
}
]
result = Runner.run(agent, input)
关键参数说明
- input_image:指定图像输入类型
- input_text:指定文本问题输入
- Runner.run:项目特有的执行方法
常见问题解决
图像细节参数问题
开发者尝试添加detail参数时遇到错误,正确的参数传递方式应为:
{
"type": "input_image",
"image_url": "...",
"detail": "des" # 直接作为同级参数
}
而非嵌套在image_url字典中,这是项目API设计时的特殊约定。
最佳实践建议
- 参数传递规范:注意项目特有的参数层级结构
- 错误处理:建议对图像URL有效性进行预验证
- 性能优化:对于大尺寸图片,可考虑先进行压缩处理
- 结果解析:使用项目提供的标准方法处理返回结果
技术延伸
这种实现方式体现了多模态AI处理的典型模式:
- 统一处理视觉和文本输入
- 保持与项目架构的一致性
- 提供可扩展的接口设计
开发者在使用时需要注意项目特定的API约定,这与标准OpenAI API的调用方式存在一定差异,但能更好地融入项目生态系统。
总结
OpenAI Agents项目为VQA任务提供了规范的实现框架,通过input_image和input_text的组合,开发者可以构建强大的视觉问答应用。理解项目的参数传递规范是成功集成的关键,这也体现了不同AI项目在API设计上的差异化特点。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249