在OpenAI Agents项目中实现视觉问答(VQA)功能的技术实践
2025-05-25 19:14:11作者:袁立春Spencer
背景与需求分析
视觉问答(Visual Question Answering)是AI领域的重要研究方向,它要求模型能够理解图像内容并回答相关问题。在OpenAI Agents项目中,开发者moseshu提出了如何利用agent处理VQA数据的需求,核心目标是让模型能够基于图片内容回答问题。
技术实现方案
基础API调用方式
原始方案采用了OpenAI API的标准调用格式:
import os
from openai import OpenAI
client = OpenAI(api_key="sk-pro.....", base_url="url")
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": "solve the question in the picture"},
{"type": "image_url", "image_url": {"url": "http://xxx/math1.webp"}}
]
}],
stream=True
)
项目推荐方案
仓库协作者提供了更符合OpenAI Agents项目规范的实现方式:
input=[
{
"role": "user",
"content": [
{"type": "input_image", "image_url": "..."},
{"type": "input_text", "text": "Describe the image"}
]
}
]
result = Runner.run(agent, input)
关键参数说明
- input_image:指定图像输入类型
- input_text:指定文本问题输入
- Runner.run:项目特有的执行方法
常见问题解决
图像细节参数问题
开发者尝试添加detail参数时遇到错误,正确的参数传递方式应为:
{
"type": "input_image",
"image_url": "...",
"detail": "des" # 直接作为同级参数
}
而非嵌套在image_url字典中,这是项目API设计时的特殊约定。
最佳实践建议
- 参数传递规范:注意项目特有的参数层级结构
- 错误处理:建议对图像URL有效性进行预验证
- 性能优化:对于大尺寸图片,可考虑先进行压缩处理
- 结果解析:使用项目提供的标准方法处理返回结果
技术延伸
这种实现方式体现了多模态AI处理的典型模式:
- 统一处理视觉和文本输入
- 保持与项目架构的一致性
- 提供可扩展的接口设计
开发者在使用时需要注意项目特定的API约定,这与标准OpenAI API的调用方式存在一定差异,但能更好地融入项目生态系统。
总结
OpenAI Agents项目为VQA任务提供了规范的实现框架,通过input_image和input_text的组合,开发者可以构建强大的视觉问答应用。理解项目的参数传递规范是成功集成的关键,这也体现了不同AI项目在API设计上的差异化特点。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
480
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882