QMK Keymap 项目下载及安装教程
1. 项目介绍
QMK Keymap 是一个开源项目,旨在为 Quantum Mechanical Keyboard (QMK) 提供可重用的键盘映射和功能库。该项目由 Pascal Getreuer 开发,适用于 Dactyl Ergodox、ZSA Moonlander 和 ZSA Voyager 等键盘。QMK Keymap 不仅提供了个性化的键盘映射,还包含多个用户空间功能库,如 Achordion、Custom Shift Keys、Mouse Turbo Click 等,极大地增强了键盘的功能性和可定制性。
2. 项目下载位置
要下载 QMK Keymap 项目,请使用以下命令:
git clone https://github.com/getreuer/qmk-keymap.git
3. 项目安装环境配置
在安装 QMK Keymap 之前,需要确保系统中已安装 QMK 固件开发环境。以下是配置步骤:
3.1 安装 QMK 工具箱
首先,下载并安装 QMK 工具箱。QMK 工具箱是一个图形化工具,用于编译和刷写 QMK 固件。

3.2 安装 QMK CLI
接下来,安装 QMK CLI(命令行界面)。QMK CLI 是一个强大的工具,用于管理和编译 QMK 固件。
python3 -m pip install qmk
3.3 初始化 QMK 环境
使用 QMK CLI 初始化 QMK 环境:
qmk setup

4. 项目安装方式
安装 QMK Keymap 项目的步骤如下:
4.1 克隆项目
首先,克隆 QMK Keymap 项目到本地:
git clone https://github.com/getreuer/qmk-keymap.git
4.2 配置用户覆盖目录
运行以下命令,配置 QMK 用户覆盖目录:
qmk config user.overlay_dir="$(realpath path/to/qmk-keymap)"
4.3 编译并刷写固件
根据使用的键盘类型,选择相应的命令编译并刷写固件:
-
Dactyl Ergodox:
qmk flash -kb handwired/dactyl_promicro -km getreuer -
ZSA Moonlander:
qmk flash -kb zsa/moonlander -km getreuer -
ZSA Voyager:
qmk flash -kb zsa/voyager -km getreuer
5. 项目处理脚本
QMK Keymap 项目包含多个处理脚本,用于自动化编译和刷写过程。以下是一些常用的脚本:
5.1 compile.sh
该脚本用于编译 QMK Keymap 项目:
#!/bin/bash
qmk compile -kb handwired/dactyl_promicro -km getreuer
5.2 flash.sh
该脚本用于刷写编译后的固件:
#!/bin/bash
qmk flash -kb handwired/dactyl_promicro -km getreuer
通过这些脚本,可以简化 QMK Keymap 项目的管理和部署过程。
以上是 QMK Keymap 项目的下载及安装教程。希望这篇文章能帮助你顺利完成项目的安装和配置。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00