LLM项目中的OpenAI请求响应日志功能实现解析
2025-05-31 09:51:03作者:沈韬淼Beryl
在LLM项目的开发过程中,调试和监控OpenAI API的请求与响应是一个重要需求。本文将深入探讨如何在项目中实现这一功能的技术细节。
背景与需求
在AI应用开发中,了解模型API的请求和响应内容对于调试和优化至关重要。LLM项目需要一种机制来记录和显示与OpenAI API的完整交互过程,包括请求头、请求体以及响应内容。
技术实现方案
HTTPX事件钩子机制
项目采用了Python的httpx库的事件钩子功能来拦截请求和响应。通过注册request和response事件钩子,可以在请求发送前和响应接收后执行自定义逻辑。
client = httpx.Client(event_hooks={
'request': [log_request],
'response': [log_response]
})
请求日志记录
请求日志记录了以下关键信息:
- HTTP方法(GET/POST等)
- 请求URL
- 请求头(敏感信息如Authorization会被脱敏处理)
- 请求体内容
def log_request(request):
click.echo(f"Request: {request.method} {request.url}")
# 处理并输出请求头
for key, value in request.headers.items():
if key.lower() == "authorization":
value = "[...]" # 脱敏处理
click.echo(f" {key}: {value}")
click.echo(f" Body: {request.content}")
响应处理挑战
响应处理面临几个技术挑战:
- 流式响应:对于流式传输(content-type: text/event-stream),需要特殊处理以避免干扰正常的流处理逻辑
- Gzip压缩:默认情况下响应可能被压缩,需要处理解压问题
- 资源释放:需要确保正确关闭响应流,避免资源泄漏
流式响应处理
对于流式响应,项目实现了一个自定义的LoggingStream类来包装原始流:
class LoggingStream:
def __iter__(self):
for chunk in self._stream:
click.echo(f" Chunk: {chunk}", err=True)
yield chunk
Gzip压缩处理
为避免处理压缩数据的复杂性,解决方案是修改请求头,明确声明不接受压缩响应:
# 移除accept-encoding头,避免接收压缩响应
request.headers.pop("accept-encoding", None)
实现效果
启用日志功能后,用户可以看到完整的请求和响应信息:
- 非流式请求:显示完整的JSON响应体
- 流式请求:显示每个数据块的原始内容
- 敏感信息保护:自动对授权头等信息进行脱敏处理
技术价值
这一实现具有以下技术价值:
- 调试友好:开发者可以清晰看到API交互细节
- 性能透明:可以观察响应时间和数据量
- 学习工具:帮助理解OpenAI API的工作机制
- 兼容性强:同时支持流式和非流式请求
最佳实践建议
- 生产环境中应谨慎启用此功能,避免日志泄露敏感信息
- 考虑添加日志级别控制,区分开发和生产环境
- 对于大型响应,可以实现分页或截断显示
- 可以扩展支持其他AI服务提供商的API日志
这一功能的实现展示了如何在不干扰核心业务逻辑的前提下,为开发者提供强大的调试工具,是LLM项目中一个值得借鉴的技术实践。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
654
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
641
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言测试用例。
Cangjie
37
857