Optax项目中的Optimistic Adam优化器解析
2025-07-07 03:47:06作者:凤尚柏Louis
概述
在深度学习优化领域,Optax作为JAX生态中的优化库,提供了多种优化算法的实现。本文将重点介绍Optimistic Adam优化器,这是一种针对生成对抗网络训练中极限循环问题提出的改进算法。
Optimistic Adam的背景
Optimistic Adam是基于传统Adam优化器的一种改进版本,特别针对生成对抗网络训练中的不稳定问题。该算法源于2018年ICLR会议上发表的论文《Training GANs with Optimism》,通过引入"乐观"梯度更新机制,有效缓解了生成对抗网络训练中常见的振荡问题。
算法原理
Optimistic Adam的核心思想结合了两个关键技术:
- Adam的自适应学习率机制:保留Adam中基于梯度一阶矩和二阶矩估计的自适应学习率特性
- 乐观梯度下降:引入前一步梯度的记忆,在当前梯度更新中考虑历史梯度信息
这种组合使得优化器在鞍点附近能够表现出更稳定的收敛特性,特别适合特定框架下的优化问题。
实现方式
在Optax中,Optimistic Adam可以通过组合两个基本变换实现:
def optimistic_adam(learning_rate, strength):
return optax.chain(
optax.scale_by_adam(), # Adam的自适应学习率
optax.scale_by_optimistic_gradient(-learning_rate, -strength) # 乐观梯度
)
关键参数说明:
learning_rate:基础学习率strength:控制乐观梯度影响的强度参数
性能验证
通过两个经典测试案例验证Optimistic Adam的性能:
- 双线性鞍点问题:最简单的优化场景
- Dirac生成对抗网络问题:模拟生成对抗网络训练中的典型动态
实验结果表明,与传统SGD和Adam相比,Optimistic Adam表现出:
- 更快的收敛速度
- 更稳定的参数更新轨迹
- 有效避免了极限循环行为
应用场景
Optimistic Adam特别适用于以下场景:
- 生成对抗网络训练
- 对抗性训练
- 任何涉及优化极值的场景
- 存在鞍点问题的优化任务
总结
Optimistic Adam作为Optax库中的一种新型优化器,为解决生成对抗网络训练中的稳定性问题提供了有效方案。其结合Adam自适应学习率和乐观梯度更新的设计思路,为复杂优化问题提供了新的解决途径。随着Optax库的持续发展,这类专用优化器将为深度学习研究提供更多有力工具。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136