YOLO-World项目部署问题解析与解决方案
2025-06-07 00:16:40作者:傅爽业Veleda
部署过程中的常见问题
在YOLO-World项目的部署过程中,开发者们经常会遇到两个主要问题。第一个问题是关于模型转换时出现的RuntimeError,错误信息显示JIT输入/输出仅支持元组、列表和变量,而当前接收到了不受支持的InstanceData类型。第二个问题是在运行deploy.py脚本时出现的AssertionError,提示在结果中找不到文本数据。
问题一:InstanceData类型不支持
当尝试将YOLO-World模型转换为ONNX格式时,可能会遇到关于InstanceData类型不被支持的运行时错误。这个问题源于PyTorch的JIT编译器对输入输出类型的限制。InstanceData是MMDetection框架中用于封装检测结果的自定义数据类型,但ONNX导出器无法直接处理这种自定义类型。
解决方案思路
要解决这个问题,需要确保模型的前向传播方法返回的是PyTorch原生支持的数据类型。通常的做法是:
- 修改模型输出层,将InstanceData转换为元组或列表形式
- 在模型定义中确保所有中间过程都使用PyTorch原生支持的数据类型
- 检查是否有自定义操作需要注册为JIT操作符
问题二:缺少文本数据
另一个常见问题是在部署过程中出现的"AssertionError: No texts found in results"错误。这个问题发生在测试管道(test pipeline)处理阶段,系统无法找到所需的文本输入。
具体解决方案
这个问题可以通过修改测试管道配置来解决。关键是在测试管道中添加LoadText转换器,并指定文本路径:
test_pipeline = [
*_base_.test_pipeline[:-1],
dict(type='LoadText', text_path='/your/own/class_texts.json'),
dict(type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param', 'texts'))
]
配置说明
LoadText转换器负责加载文本数据,需要指定包含类别文本的JSON文件路径PackDetInputs需要明确包含texts在内的所有元数据键- 文本路径应指向一个有效的JSON文件,包含模型需要识别的类别文本
部署最佳实践
为了顺利完成YOLO-World模型的部署,建议遵循以下步骤:
- 准备文本数据:创建一个包含所有目标类别文本的JSON文件
- 检查管道配置:确保测试管道正确配置了文本加载和处理步骤
- 验证模型输出:在转换前确认模型输出格式符合ONNX要求
- 逐步调试:如果遇到问题,可以分步执行管道,检查中间结果
总结
YOLO-World作为结合视觉和文本的多模态目标检测模型,在部署过程中有其特殊性。理解模型的数据流和处理管道是解决部署问题的关键。通过合理配置文本加载管道和确保模型输出兼容性,可以顺利完成模型到ONNX格式的转换。这些解决方案不仅适用于当前版本,也为未来可能遇到的类似部署问题提供了参考思路。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140