YOLO-World项目部署问题解析与解决方案
2025-06-07 03:37:56作者:傅爽业Veleda
部署过程中的常见问题
在YOLO-World项目的部署过程中,开发者们经常会遇到两个主要问题。第一个问题是关于模型转换时出现的RuntimeError,错误信息显示JIT输入/输出仅支持元组、列表和变量,而当前接收到了不受支持的InstanceData类型。第二个问题是在运行deploy.py脚本时出现的AssertionError,提示在结果中找不到文本数据。
问题一:InstanceData类型不支持
当尝试将YOLO-World模型转换为ONNX格式时,可能会遇到关于InstanceData类型不被支持的运行时错误。这个问题源于PyTorch的JIT编译器对输入输出类型的限制。InstanceData是MMDetection框架中用于封装检测结果的自定义数据类型,但ONNX导出器无法直接处理这种自定义类型。
解决方案思路
要解决这个问题,需要确保模型的前向传播方法返回的是PyTorch原生支持的数据类型。通常的做法是:
- 修改模型输出层,将InstanceData转换为元组或列表形式
- 在模型定义中确保所有中间过程都使用PyTorch原生支持的数据类型
- 检查是否有自定义操作需要注册为JIT操作符
问题二:缺少文本数据
另一个常见问题是在部署过程中出现的"AssertionError: No texts found in results"错误。这个问题发生在测试管道(test pipeline)处理阶段,系统无法找到所需的文本输入。
具体解决方案
这个问题可以通过修改测试管道配置来解决。关键是在测试管道中添加LoadText转换器,并指定文本路径:
test_pipeline = [
*_base_.test_pipeline[:-1],
dict(type='LoadText', text_path='/your/own/class_texts.json'),
dict(type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param', 'texts'))
]
配置说明
LoadText
转换器负责加载文本数据,需要指定包含类别文本的JSON文件路径PackDetInputs
需要明确包含texts在内的所有元数据键- 文本路径应指向一个有效的JSON文件,包含模型需要识别的类别文本
部署最佳实践
为了顺利完成YOLO-World模型的部署,建议遵循以下步骤:
- 准备文本数据:创建一个包含所有目标类别文本的JSON文件
- 检查管道配置:确保测试管道正确配置了文本加载和处理步骤
- 验证模型输出:在转换前确认模型输出格式符合ONNX要求
- 逐步调试:如果遇到问题,可以分步执行管道,检查中间结果
总结
YOLO-World作为结合视觉和文本的多模态目标检测模型,在部署过程中有其特殊性。理解模型的数据流和处理管道是解决部署问题的关键。通过合理配置文本加载管道和确保模型输出兼容性,可以顺利完成模型到ONNX格式的转换。这些解决方案不仅适用于当前版本,也为未来可能遇到的类似部署问题提供了参考思路。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
54
469

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
880
519

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
181
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60