JHenTai 屏蔽规则导入机制的技术分析与优化方案
2025-06-20 07:39:35作者:郜逊炳
问题背景
JHenTai 是一款功能强大的漫画阅读应用,其屏蔽规则功能允许用户自定义过滤不想看到的内容。然而,在实际使用中,用户反馈了一个重要问题:当导入屏蔽规则时,如果存在重复项,系统会将这些规则叠加而非覆盖,导致规则管理混乱。
技术现象分析
通过日志分析,我们可以清晰地看到问题发生的全过程:
- 用户导出当前屏蔽规则配置
- 尝试重新导入同一份配置
- 系统执行了"Upsert"操作(更新或插入)
- 最终导致相同规则被重复添加而非替换
核心问题在于导入逻辑没有对已有规则进行有效识别和去重处理。系统为每个导入的规则生成新的ID和组ID,即使规则内容完全相同,也会被视为新规则添加。
技术实现原理
JHenTai 的屏蔽规则系统采用分组管理机制,每个规则组包含若干具体规则。当前导入逻辑的工作流程如下:
- 解析导入的JSON配置文件
- 遍历所有规则组和规则
- 对每条规则执行"Upsert"操作
- 将新规则添加到数据库
问题根源在于"Upsert"操作没有基于规则内容进行匹配,而是简单地为每条导入规则创建新记录。
优化方案设计
方案一:基于内容的规则匹配
- 在导入前,先加载现有规则
- 对每条导入规则,检查是否存在内容相同的现有规则
- 如果存在,则更新现有规则;否则添加新规则
- 关键比较字段:target、attribute、pattern和expression
方案二:规则组合并策略
- 识别相同目的的规则组(基于组内规则内容)
- 合并相同组的规则,避免重复
- 保留用户自定义的组名和排序
方案三:导入模式选择
为用户提供三种导入模式选择:
- 严格模式:完全覆盖现有规则
- 合并模式:智能合并,去重
- 追加模式:当前行为,简单添加
技术实现细节
实现优化方案需要考虑以下技术点:
- 规则内容哈希算法:为每条规则生成唯一哈希值,用于快速比较
- 事务处理:确保导入过程的原子性
- 冲突解决策略:当新旧规则存在差异时的处理逻辑
- 性能优化:大数据量导入时的性能考虑
用户体验改进
除了技术实现,还应考虑以下用户体验优化:
- 导入前预览功能:显示将会添加/更新/跳过的规则数量
- 导入结果报告:详细展示导入操作的结果
- 撤销功能:允许用户回滚最近的导入操作
- 批量删除:提供快速清空现有规则的选项
总结
JHenTai 的屏蔽规则导入功能优化不仅解决了当前的重复项叠加问题,更为用户提供了更灵活、更强大的规则管理能力。通过基于内容的规则匹配和智能合并策略,用户可以更高效地管理和维护自己的屏蔽规则集。这一改进将显著提升用户在跨设备同步或备份恢复规则时的体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
309
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.84 K
React Native鸿蒙化仓库
JavaScript
259
322