NATS JetStream 性能问题分析与优化实践
问题背景
在NATS JetStream消息系统中,近期版本(2.10.17及以上)出现了一个值得关注的性能问题。当用户在高负载情况下向采用WorkQueue保留策略的流发布消息时,系统操作会逐渐变慢并最终超时。这一现象在2.10.12版本中并不存在,表明这是新引入的问题。
问题重现与测试环境
通过一个精心设计的测试用例可以稳定复现此问题。测试场景创建了一个包含10万条消息的WorkQueue流,并建立了一个持久化消费者。该消费者执行以下循环操作:
- 从队列获取下一条消息
- 确认(ack)该消息
- 将消息重新发布回队列
测试环境配置如下:
- 操作系统:Ubuntu 22.04.1 LTS (WSL2)
- 处理器:Intel Core i3-3220 @ 3.30GHz
- 内存:8GB
- 测试版本:2.10.12(正常)、2.10.17/2.10.18/2.11.0-dev(存在问题)
问题根源分析
深入分析后发现两个关键问题:
1. 过度压缩问题
问题源于对空块处理的优化。当块中第一个非空序列被移除(由于ack操作)时,系统会在块末尾写入一个墓碑标记。但在高负载情况下,这导致了几乎每条消息都会触发压缩操作,严重影响了性能。
根本原因是压缩逻辑中未正确计算墓碑标记的字节数,导致系统误判需要频繁压缩。修复方法是在写入墓碑标记时正确统计字节数。
2. 过早ACK确认问题
第二个问题涉及ACK确认的时序。服务器在真正从状态中移除消息之前就发送了ACK响应,这导致在某些情况下,新版本的消息可能在旧版本被移除前就已到达,违反了"每个主题最多一条消息"的限制。
这一问题是在单服务器模式或非集群资产中引入的,源于ACK响应发送逻辑的修改。服务器先发送ACK响应,再执行实际的消息移除操作,造成了竞态条件。
解决方案与优化
针对上述问题,开发团队采取了以下措施:
-
压缩优化:修正了墓碑标记的字节统计逻辑,避免了不必要的频繁压缩操作。这一修改显著提升了高负载下的性能表现。
-
ACK时序调整:正在考虑对ACK确认逻辑进行调整,确保只有在消息真正从状态中移除后才发送ACK响应,从根本上解决竞态条件问题。
性能对比与验证
在2.10.12版本中,测试用例能够顺利完成,最终流大小保持为10万条消息。而在问题版本中,会出现大量超时错误,如:
- "error fetching from workqueue nats: timeout"
- "error acking msg from workqueue nats: timeout"
此外,还会出现"maximum messages per subject exceeded"的错误,这正是过早ACK确认问题的直接表现。
最佳实践建议
对于使用NATS JetStream的用户,特别是在高负载场景下使用WorkQueue策略时,建议:
- 如果性能至关重要,可暂时使用2.10.12版本
- 密切关注官方修复版本的发布
- 在测试环境中充分验证新版本的表现
- 对于关键业务系统,考虑实施适当的监控和告警机制
总结
这次性能问题的分析和解决过程展示了分布式消息系统中微妙的时序和状态管理挑战。NATS团队通过深入的技术分析和严谨的修复方案,确保了系统的稳定性和可靠性。对于用户而言,理解这些底层机制有助于更好地设计和优化自己的消息处理架构。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C072
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00