YOLOv5目标检测中的类别限制与坐标获取技术解析
2025-04-30 18:59:23作者:虞亚竹Luna
引言
YOLOv5作为当前流行的实时目标检测框架,在实际应用中经常需要针对特定需求进行定制化开发。本文将深入探讨如何在YOLOv5中实现两个关键技术点:限制检测类别范围以及获取目标坐标信息,并结合实际应用场景给出完整解决方案。
类别限制实现方法
在YOLOv5中限制检测类别是一项常见需求,可以通过以下两种方式实现:
命令行参数方式
在执行检测脚本时,通过--classes参数指定需要检测的类别索引:
python detect.py --source 0 --weights yolov5s.pt --classes 0 1 2
上述命令将只检测类别0、1和2的目标,其他类别将被忽略。
编程接口方式
在Python脚本中,可以通过设置classes参数实现同样的效果:
from yolov5 import YOLOv5
model = YOLOv5("yolov5s.pt")
results = model.detect("input.jpg", classes=[0, 1, 2])
目标坐标获取技术
获取检测目标的坐标信息是许多应用的基础,以下是详细的实现方法:
基础坐标获取
YOLOv5的检测结果包含丰富的目标信息,其中xyxy属性提供了目标的边界框坐标:
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
results = model("input.jpg")
for box in results.xyxy[0]:
x1, y1, x2, y2, conf, cls = box
print(f"左上角坐标: ({x1}, {y1}), 右下角坐标: ({x2}, {y2})")
中心点计算
对于需要跟踪目标的场景,计算边界框中心点十分有用:
x_center = (x1 + x2) / 2
y_center = (y1 + y2) / 2
树莓派平台优化实践
在树莓派等资源受限设备上运行YOLOv5需要特别注意性能优化:
实时视频处理实现
import cv2
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = model(frame)
for box in results.xyxy[0]:
x1, y1, x2, y2, conf, cls = box
# 处理逻辑...
性能优化技巧
- 使用轻量级模型(如yolov5n)
- 降低输入分辨率(320x240)
- 合理设置检测阈值
- 优化循环处理逻辑
实际应用案例:目标跟踪系统
结合上述技术,可以实现一个完整的目标跟踪系统:
def control_motor(x_center, frame_center, threshold=20):
if x_center < frame_center - threshold:
print("向左调整")
elif x_center > frame_center + threshold:
print("向右调整")
else:
print("目标已居中")
frame_center = frame.shape[1] / 2
control_motor(x_center, frame_center)
其中阈值参数可根据实际场景调整,较小的值使系统更敏感,较大的值使系统更稳定。
总结
通过本文介绍的技术方法,开发者可以灵活地在YOLOv5中实现类别限制和目标坐标获取功能,并成功应用于树莓派等嵌入式平台。这些技术为智能监控、自动跟踪等应用场景提供了可靠的基础解决方案。在实际应用中,建议根据具体需求调整参数,并通过实验找到最优配置。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355