首页
/ AWS SDK for pandas 使用教程

AWS SDK for pandas 使用教程

2024-09-15 04:09:07作者:乔或婵

1. 项目介绍

AWS SDK for pandas(awswrangler)是一个由AWS专业服务团队开发的Python开源项目,旨在将pandas库的功能扩展到AWS云环境中。该项目通过连接pandas DataFrames与AWS的数据和分析服务,简化了数据处理和分析的流程。AWS SDK for pandas支持与多种AWS服务集成,包括Athena、Glue、Redshift、Timestream、OpenSearch、Neptune、QuickSight、Chime、CloudWatchLogs、DynamoDB、EMR、SecretManager、PostgreSQL、MySQL、SQLServer和S3等。

2. 项目快速启动

安装

首先,使用pip安装AWS SDK for pandas:

pip install awswrangler

快速启动代码示例

以下是一个简单的代码示例,展示了如何使用AWS SDK for pandas进行数据存储和检索:

import awswrangler as wr
import pandas as pd
from datetime import datetime

# 创建一个DataFrame
df = pd.DataFrame({"id": [1, 2], "value": ["foo", "boo"]})

# 将数据存储到S3 Data Lake
wr.s3.to_parquet(
    df=df,
    path="s3://bucket/dataset/",
    dataset=True,
    database="my_db",
    table="my_table"
)

# 从Amazon S3直接检索数据
df = wr.s3.read_parquet("s3://bucket/dataset/", dataset=True)

# 从Amazon Athena检索数据
df = wr.athena.read_sql_query("SELECT * FROM my_table", database="my_db")

# 获取Redshift连接并从Redshift Spectrum检索数据
con = wr.redshift.connect("my-glue-connection")
df = wr.redshift.read_sql_query("SELECT * FROM external_schema.my_table", con=con)
con.close()

# Amazon Timestream写入
df = pd.DataFrame({
    "time": [datetime.now(), datetime.now()],
    "my_dimension": ["foo", "boo"],
    "measure": [1.0, 1.1]
})
rejected_records = wr.timestream.write(
    df,
    database="sampleDB",
    table="sampleTable",
    time_col="time",
    measure_col="measure",
    dimensions_cols=["my_dimension"]
)

# Amazon Timestream查询
result = wr.timestream.query("""
    SELECT time, measure_value::double, my_dimension
    FROM "sampleDB"."sampleTable"
    ORDER BY time DESC LIMIT 3
""")

3. 应用案例和最佳实践

数据湖集成

AWS SDK for pandas可以轻松地将数据存储到S3数据湖中,并从数据湖中检索数据。通过与AWS Glue和Athena的集成,用户可以方便地进行数据目录管理和查询。

数据仓库集成

通过与Amazon Redshift的集成,用户可以轻松地将数据加载到Redshift中,并从Redshift Spectrum中检索数据。这使得用户可以在数据仓库中进行大规模的数据处理和分析。

时序数据处理

AWS SDK for pandas支持与Amazon Timestream的集成,使用户能够轻松地处理和分析时序数据。通过Timestream,用户可以存储和查询大规模的时序数据。

4. 典型生态项目

Modin

Modin是一个用于加速pandas工作负载的开源项目,通过分布式处理来提高数据处理速度。AWS SDK for pandas可以与Modin集成,以在分布式环境中运行数据处理任务。

Ray

Ray是一个用于构建分布式应用程序的开源框架。AWS SDK for pandas可以通过Ray来扩展其功能,使用户能够在分布式集群上运行数据处理任务。

Apache Arrow

Apache Arrow是一个用于内存数据的高性能跨语言开发平台。AWS SDK for pandas基于Apache Arrow构建,提供了高效的数据处理能力。

通过这些生态项目的集成,AWS SDK for pandas为用户提供了强大的数据处理和分析能力,使其能够在AWS云环境中高效地处理大规模数据。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
576
107
Ffit-framework
面向全场景的 Java 企业级插件化编程框架,支持聚散部署和共享内存,以一切皆可替换为核心理念,旨在为用户提供一种灵活的服务开发范式。
Java
111
13
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
285
74
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
44
29
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
204
50
LangBotLangBot
😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 | 适配 QQ / 微信(企业微信、个人微信)/ 飞书 / 钉钉 / Discord / Telegram 等消息平台 | 支持 OpenAI GPT、ChatGPT、DeepSeek、Dify、Claude、Gemini、Ollama、LM Studio、SiliconFlow、Qwen、Moonshot、ChatGLM 等 LLM 的机器人 / Agent | LLM-based instant messaging bots platform, supports Discord, Telegram, WeChat, Lark, DingTalk, QQ, OpenAI ChatGPT, DeepSeek
Python
7
1
RGF_CJRGF_CJ
RGF是Windows系统下的通用渲染框架,其基于Direct3D、Direct2D、DXGI、DirectWrite、WIC、GDI、GDIplus等技术开发。RGF仓颉版(后续简称"RGF")基于RGF(C/C++版)封装优化而来。RGF为开发者提供轻量化、安全、高性能以及高度一致性的2D渲染能力,并且提供对接Direct3D的相关接口,以满足开发者对3D画面渲染的需求。
Cangjie
11
0
omega-aiomega-ai
Omega-AI:基于java打造的深度学习框架,帮助你快速搭建神经网络,实现模型推理与训练,引擎支持自动求导,多线程与GPU运算,GPU支持CUDA,CUDNN。
Java
11
2
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
59
47
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
900
0