AWS SDK for pandas 使用教程
1. 项目介绍
AWS SDK for pandas(awswrangler)是一个由AWS专业服务团队开发的Python开源项目,旨在将pandas库的功能扩展到AWS云环境中。该项目通过连接pandas DataFrames与AWS的数据和分析服务,简化了数据处理和分析的流程。AWS SDK for pandas支持与多种AWS服务集成,包括Athena、Glue、Redshift、Timestream、OpenSearch、Neptune、QuickSight、Chime、CloudWatchLogs、DynamoDB、EMR、SecretManager、PostgreSQL、MySQL、SQLServer和S3等。
2. 项目快速启动
安装
首先,使用pip安装AWS SDK for pandas:
pip install awswrangler
快速启动代码示例
以下是一个简单的代码示例,展示了如何使用AWS SDK for pandas进行数据存储和检索:
import awswrangler as wr
import pandas as pd
from datetime import datetime
# 创建一个DataFrame
df = pd.DataFrame({"id": [1, 2], "value": ["foo", "boo"]})
# 将数据存储到S3 Data Lake
wr.s3.to_parquet(
df=df,
path="s3://bucket/dataset/",
dataset=True,
database="my_db",
table="my_table"
)
# 从Amazon S3直接检索数据
df = wr.s3.read_parquet("s3://bucket/dataset/", dataset=True)
# 从Amazon Athena检索数据
df = wr.athena.read_sql_query("SELECT * FROM my_table", database="my_db")
# 获取Redshift连接并从Redshift Spectrum检索数据
con = wr.redshift.connect("my-glue-connection")
df = wr.redshift.read_sql_query("SELECT * FROM external_schema.my_table", con=con)
con.close()
# Amazon Timestream写入
df = pd.DataFrame({
"time": [datetime.now(), datetime.now()],
"my_dimension": ["foo", "boo"],
"measure": [1.0, 1.1]
})
rejected_records = wr.timestream.write(
df,
database="sampleDB",
table="sampleTable",
time_col="time",
measure_col="measure",
dimensions_cols=["my_dimension"]
)
# Amazon Timestream查询
result = wr.timestream.query("""
SELECT time, measure_value::double, my_dimension
FROM "sampleDB"."sampleTable"
ORDER BY time DESC LIMIT 3
""")
3. 应用案例和最佳实践
数据湖集成
AWS SDK for pandas可以轻松地将数据存储到S3数据湖中,并从数据湖中检索数据。通过与AWS Glue和Athena的集成,用户可以方便地进行数据目录管理和查询。
数据仓库集成
通过与Amazon Redshift的集成,用户可以轻松地将数据加载到Redshift中,并从Redshift Spectrum中检索数据。这使得用户可以在数据仓库中进行大规模的数据处理和分析。
时序数据处理
AWS SDK for pandas支持与Amazon Timestream的集成,使用户能够轻松地处理和分析时序数据。通过Timestream,用户可以存储和查询大规模的时序数据。
4. 典型生态项目
Modin
Modin是一个用于加速pandas工作负载的开源项目,通过分布式处理来提高数据处理速度。AWS SDK for pandas可以与Modin集成,以在分布式环境中运行数据处理任务。
Ray
Ray是一个用于构建分布式应用程序的开源框架。AWS SDK for pandas可以通过Ray来扩展其功能,使用户能够在分布式集群上运行数据处理任务。
Apache Arrow
Apache Arrow是一个用于内存数据的高性能跨语言开发平台。AWS SDK for pandas基于Apache Arrow构建,提供了高效的数据处理能力。
通过这些生态项目的集成,AWS SDK for pandas为用户提供了强大的数据处理和分析能力,使其能够在AWS云环境中高效地处理大规模数据。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00