AWS SDK for pandas 使用教程
1. 项目介绍
AWS SDK for pandas(awswrangler)是一个由AWS专业服务团队开发的Python开源项目,旨在将pandas库的功能扩展到AWS云环境中。该项目通过连接pandas DataFrames与AWS的数据和分析服务,简化了数据处理和分析的流程。AWS SDK for pandas支持与多种AWS服务集成,包括Athena、Glue、Redshift、Timestream、OpenSearch、Neptune、QuickSight、Chime、CloudWatchLogs、DynamoDB、EMR、SecretManager、PostgreSQL、MySQL、SQLServer和S3等。
2. 项目快速启动
安装
首先,使用pip安装AWS SDK for pandas:
pip install awswrangler
快速启动代码示例
以下是一个简单的代码示例,展示了如何使用AWS SDK for pandas进行数据存储和检索:
import awswrangler as wr
import pandas as pd
from datetime import datetime
# 创建一个DataFrame
df = pd.DataFrame({"id": [1, 2], "value": ["foo", "boo"]})
# 将数据存储到S3 Data Lake
wr.s3.to_parquet(
df=df,
path="s3://bucket/dataset/",
dataset=True,
database="my_db",
table="my_table"
)
# 从Amazon S3直接检索数据
df = wr.s3.read_parquet("s3://bucket/dataset/", dataset=True)
# 从Amazon Athena检索数据
df = wr.athena.read_sql_query("SELECT * FROM my_table", database="my_db")
# 获取Redshift连接并从Redshift Spectrum检索数据
con = wr.redshift.connect("my-glue-connection")
df = wr.redshift.read_sql_query("SELECT * FROM external_schema.my_table", con=con)
con.close()
# Amazon Timestream写入
df = pd.DataFrame({
"time": [datetime.now(), datetime.now()],
"my_dimension": ["foo", "boo"],
"measure": [1.0, 1.1]
})
rejected_records = wr.timestream.write(
df,
database="sampleDB",
table="sampleTable",
time_col="time",
measure_col="measure",
dimensions_cols=["my_dimension"]
)
# Amazon Timestream查询
result = wr.timestream.query("""
SELECT time, measure_value::double, my_dimension
FROM "sampleDB"."sampleTable"
ORDER BY time DESC LIMIT 3
""")
3. 应用案例和最佳实践
数据湖集成
AWS SDK for pandas可以轻松地将数据存储到S3数据湖中,并从数据湖中检索数据。通过与AWS Glue和Athena的集成,用户可以方便地进行数据目录管理和查询。
数据仓库集成
通过与Amazon Redshift的集成,用户可以轻松地将数据加载到Redshift中,并从Redshift Spectrum中检索数据。这使得用户可以在数据仓库中进行大规模的数据处理和分析。
时序数据处理
AWS SDK for pandas支持与Amazon Timestream的集成,使用户能够轻松地处理和分析时序数据。通过Timestream,用户可以存储和查询大规模的时序数据。
4. 典型生态项目
Modin
Modin是一个用于加速pandas工作负载的开源项目,通过分布式处理来提高数据处理速度。AWS SDK for pandas可以与Modin集成,以在分布式环境中运行数据处理任务。
Ray
Ray是一个用于构建分布式应用程序的开源框架。AWS SDK for pandas可以通过Ray来扩展其功能,使用户能够在分布式集群上运行数据处理任务。
Apache Arrow
Apache Arrow是一个用于内存数据的高性能跨语言开发平台。AWS SDK for pandas基于Apache Arrow构建,提供了高效的数据处理能力。
通过这些生态项目的集成,AWS SDK for pandas为用户提供了强大的数据处理和分析能力,使其能够在AWS云环境中高效地处理大规模数据。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00