首页
/ AWS SDK for pandas 使用教程

AWS SDK for pandas 使用教程

2024-09-15 23:19:44作者:乔或婵

1. 项目介绍

AWS SDK for pandas(awswrangler)是一个由AWS专业服务团队开发的Python开源项目,旨在将pandas库的功能扩展到AWS云环境中。该项目通过连接pandas DataFrames与AWS的数据和分析服务,简化了数据处理和分析的流程。AWS SDK for pandas支持与多种AWS服务集成,包括Athena、Glue、Redshift、Timestream、OpenSearch、Neptune、QuickSight、Chime、CloudWatchLogs、DynamoDB、EMR、SecretManager、PostgreSQL、MySQL、SQLServer和S3等。

2. 项目快速启动

安装

首先,使用pip安装AWS SDK for pandas:

pip install awswrangler

快速启动代码示例

以下是一个简单的代码示例,展示了如何使用AWS SDK for pandas进行数据存储和检索:

import awswrangler as wr
import pandas as pd
from datetime import datetime

# 创建一个DataFrame
df = pd.DataFrame({"id": [1, 2], "value": ["foo", "boo"]})

# 将数据存储到S3 Data Lake
wr.s3.to_parquet(
    df=df,
    path="s3://bucket/dataset/",
    dataset=True,
    database="my_db",
    table="my_table"
)

# 从Amazon S3直接检索数据
df = wr.s3.read_parquet("s3://bucket/dataset/", dataset=True)

# 从Amazon Athena检索数据
df = wr.athena.read_sql_query("SELECT * FROM my_table", database="my_db")

# 获取Redshift连接并从Redshift Spectrum检索数据
con = wr.redshift.connect("my-glue-connection")
df = wr.redshift.read_sql_query("SELECT * FROM external_schema.my_table", con=con)
con.close()

# Amazon Timestream写入
df = pd.DataFrame({
    "time": [datetime.now(), datetime.now()],
    "my_dimension": ["foo", "boo"],
    "measure": [1.0, 1.1]
})
rejected_records = wr.timestream.write(
    df,
    database="sampleDB",
    table="sampleTable",
    time_col="time",
    measure_col="measure",
    dimensions_cols=["my_dimension"]
)

# Amazon Timestream查询
result = wr.timestream.query("""
    SELECT time, measure_value::double, my_dimension
    FROM "sampleDB"."sampleTable"
    ORDER BY time DESC LIMIT 3
""")

3. 应用案例和最佳实践

数据湖集成

AWS SDK for pandas可以轻松地将数据存储到S3数据湖中,并从数据湖中检索数据。通过与AWS Glue和Athena的集成,用户可以方便地进行数据目录管理和查询。

数据仓库集成

通过与Amazon Redshift的集成,用户可以轻松地将数据加载到Redshift中,并从Redshift Spectrum中检索数据。这使得用户可以在数据仓库中进行大规模的数据处理和分析。

时序数据处理

AWS SDK for pandas支持与Amazon Timestream的集成,使用户能够轻松地处理和分析时序数据。通过Timestream,用户可以存储和查询大规模的时序数据。

4. 典型生态项目

Modin

Modin是一个用于加速pandas工作负载的开源项目,通过分布式处理来提高数据处理速度。AWS SDK for pandas可以与Modin集成,以在分布式环境中运行数据处理任务。

Ray

Ray是一个用于构建分布式应用程序的开源框架。AWS SDK for pandas可以通过Ray来扩展其功能,使用户能够在分布式集群上运行数据处理任务。

Apache Arrow

Apache Arrow是一个用于内存数据的高性能跨语言开发平台。AWS SDK for pandas基于Apache Arrow构建,提供了高效的数据处理能力。

通过这些生态项目的集成,AWS SDK for pandas为用户提供了强大的数据处理和分析能力,使其能够在AWS云环境中高效地处理大规模数据。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
224
2.26 K
flutter_flutterflutter_flutter
暂无简介
Dart
526
116
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
210
286
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
frameworksframeworks
openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
984
582
pytorchpytorch
Ascend Extension for PyTorch
Python
67
97
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
567
94
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0