Conform.nvim 格式化工具与 Prettier 配置问题解析
问题背景
在使用 Conform.nvim 这个 Neovim 格式化插件时,用户遇到了 Prettier 配置未被正确识别的问题。具体表现为 Prettier 的配置文件(prettier.config.js)中的设置没有被应用,尤其是 tabWidth 和 useTabs 等缩进相关配置。
问题分析
从技术角度来看,这个问题涉及几个关键点:
-
格式化工具选择:用户最初使用的是通过 Mason 安装的 prettierd(Prettier 守护进程),而不是项目本地安装的 Prettier。
-
配置优先级:Prettier 在查找配置文件时有特定的优先级顺序,而守护进程可能没有正确继承当前工作目录的配置。
-
参数冲突:useTabs 和 tabWidth 参数之间存在潜在的冲突,导致格式化结果不符合预期。
解决方案
方案一:使用项目本地 Prettier
将 Conform.nvim 配置改为使用项目本地安装的 Prettier,而非全局安装的 prettierd:
formatters_by_ft = {
lua = { 'stylua' },
html = { 'prettier' },
javascript = { 'prettier' },
typescript = { 'prettier' },
typescriptreact = { 'prettier' },
javascriptreact = { 'prettier' },
}
这种配置确保了格式化工具会使用项目根目录下的 node_modules 中的 Prettier 版本,自然也能正确识别项目中的 prettier.config.js 文件。
方案二:解决参数冲突
当同时配置了 useTabs 和 tabWidth 时,可能会出现格式化结果不符合预期的情况。这是因为:
- useTabs: true 表示使用制表符进行缩进
- tabWidth 则指定了空格缩进的宽度
这两个参数实际上是互斥的。解决方案是:
- 如果希望使用制表符缩进,只需设置 useTabs: true
- 如果希望使用空格缩进,设置 useTabs: false 并指定 tabWidth
最佳实践建议
-
优先使用项目本地 Prettier:这样可以确保格式化行为与项目其他开发者一致,也避免了全局安装版本与项目要求版本不一致的问题。
-
明确缩进策略:在团队项目中,应该明确是使用制表符还是空格进行缩进,避免混用导致格式混乱。
-
验证配置:可以通过命令行直接运行 Prettier 来验证配置是否生效:
npx prettier --check . -
日志调试:当遇到问题时,可以启用 Conform.nvim 的调试日志来查看实际执行的命令和结果:
require("conform").setup({
log_level = vim.log.levels.DEBUG,
-- 其他配置...
})
总结
Conform.nvim 是一个强大的 Neovim 格式化插件,但在与 Prettier 配合使用时需要注意工具版本和配置的兼容性。通过使用项目本地 Prettier 和合理配置缩进参数,可以确保代码格式化结果符合预期。对于团队项目,建议将这些配置固化在项目根目录的 Prettier 配置文件中,以保证所有开发者获得一致的格式化体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01