探索城市街道的未来:街景学习(StreetLearn)
2024-05-23 14:34:30作者:宗隆裙
项目概览
StreetLearn 是一个由C++引擎驱动的开源项目,它为在真实世界的摄影街头环境中训练导航代理提供了一个Python环境。该项目源自[1]《无地图的城市导航学习》(NeurIPS 2018)的研究,并在后续的[2]《跨视图策略学习用于街道导航》(ICCV 2019)和[3]《遵循方向的学习》(AAAI 2020)中进一步发展。这个环境利用了谷歌街景的全景图像,允许用户在一个第一人称视角下在街景图中移动代理。请注意,这并非官方支持的谷歌产品。
StreetLearn 的代码结构包括一个C++引擎,用于加载和缓存全景图,以及一个Python接口,提供了自定义行动空间的游戏环境。此外,还有一系列基于pygame的简单交互式代理,如人类代理、预言者代理和指令跟随预言者代理,可用于测试和评估导航性能。
技术分析
项目的核心是街景学习引擎,该引擎能够将等距柱状投影的全景图转换成特定角度的第一人称视图。使用TensorFlow实现的"重要性加权演员-学者架构"(IMPALA)来训练和实施导航代理,这一架构由Espeholt等人在2018年的论文中提出。通过Bazel构建系统进行编译和管理,项目依赖于Protocol Buffers、CLIF库、OpenCV 2.4.13和Python的各种库。
应用场景
StreetLearn 可以应用于:
- 自动驾驶汽车的路径规划和感知理解。
- 智能机器人在复杂城市环境中的导航。
- 虚拟现实(VR)游戏的开发,模拟真实的街头导航体验。
- 地图或位置数据服务的算法研究。
项目特点
- 实际环境模拟:使用真实的街景图片,创建了与现实世界相似的导航挑战。
- 自定义行动空间:Python接口允许定义不同的动作集,适应多种任务需求。
- 可扩展性:基于Bazel的构建系统和模块化设计,易于集成新的代理和环境组件。
- 开放源代码:鼓励社区参与,推动机器学习和导航技术的进步。
如果你对机器学习在城市导航中的应用感兴趣,或者想要在实际环境中训练智能体,那么StreetLearn是一个绝佳的起点。立即开始探索,用你的代理穿越全球的城市街道吧!
引用文献
@inproceedings{mirowski2018learning,
title={Learning to Navigate in Cities Without a Map},
author={Mirowski, Piotr and Grimes, Matthew Koichi and Malinowski, Mateusz and Hermann, Karl Moritz and Anderson, Keith and Teplyashin, Denis and Simonyan, Karen and Kavukcuoglu, Koray and Zisserman, Andrew and Hadsell, Raia},
booktitle={Neural Information Processing Systems (NeurIPS)},
year={2018}
}
@article{mirowski2019streetlearn,
title={The StreetLearn Environment and Dataset},
author={Mirowski, Piotr and Banki-Horvath, Andras and Anderson, Keith and Teplyashin, Denis and Hermann, Karl Moritz and Malinowski, Mateusz and Grimes, Matthew Koichi and Simonyan, Karen and Kavukcuoglu, Koray and Zisserman, Andrew and others},
journal={arXiv preprint arXiv:1903.01292},
year={2019}
}
要启动你的StreetLearn之旅,请访问项目页面获取详细信息和安装指南:https://github.com/deepmind/streetlearn。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76