OpenCompass评测框架中DeepSeek-R1模型IF-Eval得分异常问题分析
2025-06-08 02:33:05作者:江焘钦
问题背景
在使用OpenCompass评测框架对DeepSeek-R1模型进行IF-Eval基准测试时,发现评测结果与官方公布的83.3分存在显著差异,实际得分仅为34.20分。经过深入分析,发现这是由于模型输出格式的特殊性导致的评测偏差。
问题根源
DeepSeek-R1模型在生成文本时,会先输出<think>...</think>标签包裹的思考过程,然后再输出实际回答内容。这种输出模式虽然有助于理解模型的推理过程,但在IF-Eval这类严格评测中会导致以下问题:
- 评测脚本会错误地将思考内容纳入评测范围
- 思考内容可能包含不符合指令要求的文本
- 实际回答内容被思考内容"污染",导致评测分数下降
技术解决方案
OpenCompass框架已经内置了处理这类问题的功能,开发者可以通过两种方式解决:
方法一:使用think_pred_postprocess后处理器
from opencompass.utils import think_pred_postprocess
dict(
abbr="deepseek-chat-r1",
type=OpenAISDK,
path="deepseek-r1-250120",
# 其他配置参数...
pred_postprocessor=dict(
type=think_pred_postprocess,
re_pattern=r'</think>([\s\S]*)'
)
)
方法二:使用extract_non_reasoning_content后处理器
dict(
type=TurboMindModelwithChatTemplate,
abbr='deepseek-r1-distill-qwen-7b-turbomind',
path='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B',
# 其他配置参数...
pred_postprocessor=dict(type=extract_non_reasoning_content)
)
实现原理
这两种后处理器的核心功能都是移除模型输出中的推理过程内容,只保留最终回答:
think_pred_postprocess使用正则表达式匹配</think>标签后的所有内容extract_non_reasoning_content则是更通用的非推理内容提取器
最佳实践建议
- 对于会输出思考过程的模型,务必配置合适的后处理器
- 评测前应检查模型输出格式,确认是否符合预期
- 对于自定义模型,可以基于现有后处理器开发适合特定格式的处理逻辑
- 在模型卡片中明确说明输出格式特点,方便评测配置
总结
OpenCompass框架提供了灵活的机制来处理不同模型的输出格式差异。通过合理配置后处理器,可以确保评测结果的准确性和可比性。这一案例也提醒我们,在模型评测中,输出格式的处理与模型能力本身同等重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704