AFL++项目在s390x架构下的编译问题分析与解决
问题背景
AFL++作为一款广受欢迎的模糊测试工具,在4.31c版本发布后,开发者和用户发现在s390x架构(IBM Z系列大型机使用的64位架构)上编译时遇到了问题。这个问题表现为在编译过程中出现了函数隐式声明的错误,具体指向classify_counts_mem
函数。
问题现象
在s390x架构上编译AFL++ 4.31c版本时,编译器报告如下错误:
src/afl-fuzz-bitmap.c: In function 'save_if_interesting':
src/afl-fuzz-bitmap.c:541:7: error: implicit declaration of function 'classify_counts_mem'
这个错误表明编译器无法找到classify_counts_mem
函数的正确定义,而错误提示建议可能是想使用classify_counts
函数。
技术分析
深入分析这个问题,我们发现几个关键点:
-
架构特性:s390x是IBM Z系列大型机使用的64位架构,而且是目前少数仍在使用的大端序(Big-Endian)架构之一。这种架构特性可能导致一些内存处理函数需要特殊对待。
-
函数定义缺失:错误表明
classify_counts_mem
函数没有被正确定义。检查代码后发现,这个函数在64位架构的头文件(coverage-64.h)中有定义,但在32位架构的头文件(coverage-32.h)中缺失。 -
类型不匹配:后续的构建尝试中还出现了指针类型不匹配的问题,64位指针(u64*)被传递给期望32位指针(u32*)的函数。
解决方案
AFL++开发团队迅速响应并提供了修复方案:
- 为32位架构添加了对应的
classify_counts_mem
函数定义 - 引入了
_AFL_INTSIZEVAR
宏定义,根据架构自动选择使用u32或u64类型 - 修改了函数调用方式,使用宏定义确保类型一致性
修复后的代码使用如下方式调用函数:
classify_counts_mem((_AFL_INTSIZEVAR *)afl->san_fsrvs[0].trace_bits, afl->fsrv.map_size);
其中_AFL_INTSIZEVAR
会根据架构自动定义为u32或u64。
验证结果
修复后的代码在s390x架构上成功编译通过,解决了原始问题。同时,这个修复也解决了在i586(32位x86)架构上出现的类似问题。
经验总结
这个案例为我们提供了几个有价值的经验:
-
跨平台兼容性:开发支持多架构的软件时,必须特别注意数据类型大小的差异,特别是在处理内存和指针时。
-
宏定义的巧妙使用:通过定义架构相关的宏(_AFL_INTSIZEVAR)可以优雅地解决不同架构下的类型差异问题。
-
大端序架构的特殊性:虽然大多数现代系统使用小端序,但支持大端序架构(如s390x)仍然很重要,特别是在企业级应用中。
-
及时响应社区反馈:开源项目的健康发展离不开开发者与用户的良好互动,快速响应和解决问题能够提升项目质量。
这个问题的解决展示了AFL++项目团队对多架构支持的重视和对用户反馈的积极响应,也体现了开源社区协作解决问题的效率。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









