MLJ.jl项目中关于支持带目标变量的无监督模型管道处理的技术解析
2025-07-07 03:57:28作者:冯爽妲Honey
背景与问题描述
在机器学习工作流中,管道(Pipeline)是一种将多个处理步骤串联起来的强大工具。MLJ.jl作为Julia语言的机器学习框架,提供了灵活的管道支持。然而,当前版本在处理一类特殊模型时存在局限性——那些在训练阶段需要目标变量但在预测阶段表现为无监督性质的模型。
这类模型的典型代表包括:
- 递归特征消除(RecursiveFeatureElimination):在训练时需要目标变量来确定特征重要性,但在转换阶段仅输出筛选后的特征
- 目标编码器(Target Encoder):根据目标变量对输入特征进行编码,但转换时仅输出编码后的特征
技术挑战分析
当前MLJ.jl的管道实现面临以下技术难题:
-
模型分类问题:传统上,模型被简单地分为监督(Supervised)和无监督(Unsupervised)两类。但上述模型同时具有两种特性,难以归类。
-
管道训练机制:标准管道在处理无监督模型时,不会将目标变量传递给模型的fit方法,导致这些"半监督"模型无法获取必要的训练信息。
-
类型系统限制:原本考虑使用
fit_data_scitype来识别这类模型,但由于Julia 1.10移除了Tuple{Union{},...}的支持,这一方案不再可行。
解决方案设计
针对这一问题,MLJ.jl团队提出了引入新特质(trait)target_in_fit的技术方案:
-
特质设计:
- 该特质明确标识模型在训练阶段需要目标变量
- 与LearnAPI未来发展方向保持一致
- 保持向后兼容性
-
管道处理逻辑:
- 当管道检测到某模型具有
target_in_fit特质时,会在训练阶段传递目标变量 - 在预测/转换阶段,仍按无监督模型处理输出
- 当管道检测到某模型具有
-
实现优势:
- 清晰地区分了模型的训练行为和预测行为
- 避免了复杂的类型系统hack
- 为未来扩展预留了空间
技术影响评估
这一改进将为MLJ.jl带来多方面提升:
- 功能扩展:支持更多类型的特征工程和模型选择算法在管道中使用
- API一致性:使模型接口更加一致和可预测
- 用户体验:用户无需再为这类特殊模型编写自定义管道逻辑
实际应用示例
以目标编码器为例,改进后的使用方式将更加直观:
# 定义管道
pipe = @pipeline TargetEncoder() RidgeRegressor()
# 训练时自动传递目标变量给编码器
mach = machine(pipe, X, y) |> fit!
这种设计使得复杂的数据预处理流程能够无缝集成到机器学习工作流中,同时保持代码的简洁性和可维护性。
总结与展望
MLJ.jl通过引入target_in_fit特质,巧妙地解决了混合型模型在管道中的处理问题。这一改进不仅解决了当前的技术限制,还为框架未来的扩展奠定了良好基础。随着机器学习算法的不断发展,这种灵活的设计理念将使MLJ.jl能够更好地适应新兴的算法范式和应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
614
138
Ascend Extension for PyTorch
Python
163
183
React Native鸿蒙化仓库
JavaScript
240
314
仓颉编译器源码及 cjdb 调试工具。
C++
126
854
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
369
3.15 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
255
90
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
644
255