Agave项目v2.1.9版本发布:性能优化与功能增强
Agave是一个高性能区块链项目,专注于提供快速、安全的分布式账本技术。该项目采用了创新的共识机制和网络协议,旨在实现高吞吐量和低延迟的交易处理能力。最新发布的v2.1.9版本带来了一系列重要的性能优化和功能改进,特别针对Testnet环境进行了优化,同时也推荐用于Devnet和部分Mainnet Beta节点。
核心改进内容
RPC性能优化
v2.1.9版本对RPC(远程过程调用)服务进行了显著的性能优化。通过避免在轮询IO通知时阻塞工作线程,显著降低了RPC调用的延迟。这一改进使得节点能够更高效地处理来自客户端的请求,特别是在高负载情况下,能够保持更稳定的响应时间。
Merkle碎片链扩展
该版本将链式Merkle碎片(Chained Merkle Shreds)功能扩展到了约21%的主网插槽(slots)。Merkle碎片是Agave项目中用于数据分片和验证的重要数据结构,这种链式结构能够提高数据验证的效率,同时减少网络带宽的消耗。这一扩展将为网络带来更好的可扩展性和更高的吞吐量。
内置成本默认值修复
在v2.1.9中,修复了一个关于内置功能默认成本依赖迁移的问题。这一修复确保了在不同网络环境下,内置功能的成本计算能够保持一致性和准确性,避免了因迁移导致的成本计算错误。
Tokio运行时更新
项目更新到了最新版本的Tokio异步运行时。Tokio是Rust生态中广泛使用的异步I/O库,这次更新带来了性能提升和bug修复,进一步增强了节点的稳定性和处理能力。
功能门控改进
对ledger-tool工具中的--deactivate-feature-gate命令进行了改进,现在该命令能够在子银行(child bank)中正确停用功能门控。功能门控是Agave项目中用于逐步推出新功能的重要机制,这一改进使得功能管理更加灵活和可靠。
技术实现细节
在RPC性能优化方面,开发团队通过重构IO事件处理机制,将阻塞式的轮询改为非阻塞方式。这种改变充分利用了现代操作系统的异步IO能力,使得工作线程能够在等待IO时处理其他任务,从而提高了整体吞吐量。
Merkle碎片链的扩展采用了渐进式部署策略,首先在21%的插槽中启用,以便观察实际效果并进行必要的调整。这种数据结构通过将验证信息组织成链式结构,减少了重复验证的开销,同时保持了数据的完整性和可验证性。
Tokio运行时的更新涉及到底层异步任务调度机制的改进,新的版本提供了更高效的线程池管理和任务调度策略,这对于处理大量并发请求的区块链节点尤为重要。
版本适用建议
v2.1.9版本主要针对Testnet环境进行了优化和测试,建议所有Testnet节点尽快升级。对于Devnet环境,该版本也经过了充分验证,推荐使用。对于Mainnet Beta环境,建议采用渐进式部署策略,首先在不超过5%的节点上升级,观察稳定性后再逐步扩大范围。
该版本提供了针对多种平台的二进制包,包括aarch64和x86_64架构的macOS、Windows以及Linux系统。用户可以根据自己的运行环境选择合适的版本进行升级。
总结
Agave v2.1.9版本通过一系列精心设计的优化和改进,进一步提升了区块链网络的性能和可靠性。从RPC调用的延迟降低到Merkle碎片链的扩展,再到运行时库的更新,这些改进共同构成了一个更加健壮和高效的区块链系统。开发团队将继续关注网络表现,并根据反馈进行进一步的优化和调整。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00