Smile-Cola:基于SpringBoot+MybatisPlus+Cola的整洁面向对象分层架构示例
项目介绍
Smile-Cola 是一个开源项目,它展示了如何使用 Spring Boot 结合 MybatisPlus 以及 Cola框架 (版本4.0) 来重构订单管理功能。该项目遵循整洁的面向对象设计原则,并通过分层架构提供了一种高效的方式来组织应用程序的各个部分。主要目的是为了展示如何在实际项目中实施高内聚低耦合的设计思想。
项目快速启动
环境准备
确保你的开发环境已经配置了Java SDK (推荐11或更高版本),以及Maven。
获取项目
克隆项目到本地:
git clone https://github.com/charles0719/smile-cola.git
依赖安装
由于项目使用了Cola框架的特定版本,你可能需要先安装Cola的相关Archetype和Components。具体步骤如下:
-
下载Cola Archetype源码并安装:
git clone https://github.com/alibaba/COLA cd cola-archetypes mvn install
-
同样地,下载并安装Cola Components:
cd ../cola-components mvn install
运行项目
进入Smile-Cola项目根目录,执行以下命令来构建并启动应用:
cd smile-cola
mvn spring-boot:run
成功启动后,可以通过访问 http://localhost:8080
来查看是否正常运行(具体端口可能会根据应用配置有所不同)。
应用案例和最佳实践
项目中通过定义Client Objects (CO)
、Commands (Cmd)
、Queries
与对应的Executor来实现CRUD操作,这展现了Cola框架中的命令模式和职责明确的架构设计。例如,新增订单可以通过调用POST http://localhost:8080/order/add
接口实现,体现了业务逻辑的封装和解耦。
典型生态项目
虽然直接关联的“典型生态项目”在这个描述中没有详细列出,但Cola框架鼓励结合微服务、云原生技术栈进行应用开发。你可以参考阿里巴巴的其他开源项目如Dubbo或者Spring Cloud Alibaba来集成分布式服务治理,构建更健壮的服务生态系统。此外,《复杂度应对之道 - COLA应用架构》可以作为进一步学习Cola设计理念和架构的最佳实践参考。
以上是Smile-Cola项目的基本介绍、快速启动指南、应用案例概览及对生态融合的一些建议,希望能为你提供一个清晰的入门指引。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









