Smile-Cola:基于SpringBoot+MybatisPlus+Cola的整洁面向对象分层架构示例
项目介绍
Smile-Cola 是一个开源项目,它展示了如何使用 Spring Boot 结合 MybatisPlus 以及 Cola框架 (版本4.0) 来重构订单管理功能。该项目遵循整洁的面向对象设计原则,并通过分层架构提供了一种高效的方式来组织应用程序的各个部分。主要目的是为了展示如何在实际项目中实施高内聚低耦合的设计思想。
项目快速启动
环境准备
确保你的开发环境已经配置了Java SDK (推荐11或更高版本),以及Maven。
获取项目
克隆项目到本地:
git clone https://github.com/charles0719/smile-cola.git
依赖安装
由于项目使用了Cola框架的特定版本,你可能需要先安装Cola的相关Archetype和Components。具体步骤如下:
-
下载Cola Archetype源码并安装:
git clone https://github.com/alibaba/COLA cd cola-archetypes mvn install
-
同样地,下载并安装Cola Components:
cd ../cola-components mvn install
运行项目
进入Smile-Cola项目根目录,执行以下命令来构建并启动应用:
cd smile-cola
mvn spring-boot:run
成功启动后,可以通过访问 http://localhost:8080
来查看是否正常运行(具体端口可能会根据应用配置有所不同)。
应用案例和最佳实践
项目中通过定义Client Objects (CO)
、Commands (Cmd)
、Queries
与对应的Executor来实现CRUD操作,这展现了Cola框架中的命令模式和职责明确的架构设计。例如,新增订单可以通过调用POST http://localhost:8080/order/add
接口实现,体现了业务逻辑的封装和解耦。
典型生态项目
虽然直接关联的“典型生态项目”在这个描述中没有详细列出,但Cola框架鼓励结合微服务、云原生技术栈进行应用开发。你可以参考阿里巴巴的其他开源项目如Dubbo或者Spring Cloud Alibaba来集成分布式服务治理,构建更健壮的服务生态系统。此外,《复杂度应对之道 - COLA应用架构》可以作为进一步学习Cola设计理念和架构的最佳实践参考。
以上是Smile-Cola项目的基本介绍、快速启动指南、应用案例概览及对生态融合的一些建议,希望能为你提供一个清晰的入门指引。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0109AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









