开源项目最佳实践教程:Deep Research Agent
2025-05-17 16:39:06作者:盛欣凯Ernestine
1. 项目介绍
Deep Research Agent 是一个基于文档的代理 AI 研究系统,它通过持续的上下文管理和工具集成,帮助进行综合分析。该系统的核心哲学包括:
- 文档中心记忆:利用持久的文档来维护上下文并跟踪进度,解决了语言模型的基本上下文窗口限制问题。
- 结构化通信:在共享的草稿纸上记录所有信息,确保不丢失任何关键信息。
- 工具增强:利用专门的工具进行最新信息的收集和分析。
- 用户代理:作为协作伙伴,通过清晰的文档和决策点,让用户保持控制。
2. 项目快速启动
首先,您需要在您的环境中设置该项目。以下是快速启动的步骤:
# 创建虚拟环境
python3 -m venv venv
# 激活虚拟环境
source venv/bin/activate
# 安装依赖
pip install -r requirements.txt
# 安装 Playwright 浏览器
playwright install chromium
# 设置 API 密钥
export OPENAI_API_KEY=your_openai_api_key
export ANTHROPIC_API_KEY=your_anthropic_api_key
# 运行研究查询
python3 deep_research_agent.py "your research query"
确保将 your_openai_api_key 和 your_anthropic_api_key 替换为您的实际 API 密钥。
3. 应用案例和最佳实践
以下是一个应用案例,展示了如何使用 Deep Research Agent 进行股票分析:
案例:分析 NVIDIA 近期股票表现
python3 deep_research_agent.py "Perform a detailed analysis on the recent trend of NVDA stock. How did the stock price change? What might have caused it? How about the market sentiment?"
该代理将:
- 在
scratchpad.md中创建一个研究计划。 - 生成并执行分析脚本(需要用户确认)。
- 在
nvda_analysis_report.md中生成全面的分析报告。
最佳实践:
- 在执行脚本之前,确保您已经理解了脚本的功能和目的。
- 使用脚本生成报告后,仔细检查结果以确保准确性。
- 保持草稿纸的更新,以便跟踪研究的进展。
4. 典型生态项目
Deep Research Agent 是一个可以集成到更广泛生态系统中的工具。以下是一些可能会与 Deep Research Agent 配合使用的典型项目:
- Web Scraping Tools:用于从网站上提取数据的工具,如 Beautiful Soup 或 Scrapy。
- Data Analysis Libraries:用于数据分析的库,如 Pandas 或 NumPy。
- Machine Learning Frameworks:用于构建预测模型的框架,如 TensorFlow 或 PyTorch。
通过这些工具和库的集成,Deep Research Agent 可以进一步增强其研究和分析能力。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19