SillyTavern项目中关于Claude提示缓存的兼容性设计与实现
在SillyTavern项目的开发过程中,开发者们遇到了一个关于Claude模型提示缓存功能的兼容性问题。这个问题涉及到不同API源之间的功能差异,以及如何在不破坏现有兼容性的前提下提供更好的用户体验。
问题背景
SillyTavern支持多种API源,包括原生的Claude接口、OpenRouter以及自定义源。其中,Claude和OpenRouter源都支持系统提示缓存功能,包括深度缓存。然而,当用户选择使用自定义源时,这些缓存功能却无法使用。这给那些希望通过自定义源使用OpenRouter Claude接口并应用"严格"模式后处理的用户带来了不便。
技术考量
核心开发团队经过讨论后认为,自定义源的设计初衷是保持与OpenAI API的兼容性。如果在自定义源中添加特定的负载修改功能(如提示缓存),将会使其与OpenAI API标准产生偏离。这种设计决策体现了项目对API兼容性的重视。
解决方案
开发团队采取了多方面的解决策略:
-
与OpenRouter团队沟通:针对系统消息处理的问题,开发团队与OpenRouter进行了沟通,OpenRouter表示会重新考虑如何处理提示中间的系统消息。
-
增强OpenRouter源的功能:在项目的staging分支中,开发者为OpenRouter源添加了"半严格"(semi-strict)后处理选项。这种模式可以解决系统角色相关的问题,同时保持API的兼容性。
-
缓存标记处理优化:开发者确认,添加缓存标记的函数不会进行可能导致其他功能失效的非必要请求重写。这个函数会在最后被调用,确保不会影响其他处理流程。
技术实现细节
在具体实现上,项目团队特别注意了以下几点:
- 缓存标记的添加过程会确保不擦除任何元数据
- 对于消息格式的转换(如将字符串转换为{"type": "text", "text": string}格式)是安全且必要的
- 保持与OpenAI API标准的兼容性始终是首要考虑因素
用户建议
对于需要使用Claude模型并希望获得提示缓存功能的用户,建议:
- 优先使用原生的Claude接口或OpenRouter源
- 如果需要使用自定义源,可以考虑等待OpenRouter对系统消息处理的改进
- 可以尝试staging分支中的新功能,特别是"半严格"后处理模式
这个案例展示了在开源项目开发中如何平衡功能需求与API兼容性,以及如何通过多方面的技术方案来解决复杂的接口兼容问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00