DB-GPT项目:如何通过代理调用本地vLLM服务实现大模型集成
在实际的大模型应用开发中,我们经常会遇到这样的场景:已经通过vLLM框架在本地部署了大模型服务,并基于该服务开发了多个应用功能。此时如果需要在DB-GPT项目中复用这个服务,而不是重新加载模型,应该如何实现呢?本文将详细介绍这一技术方案。
技术背景
vLLM是一个高效的大语言模型推理框架,它提供了标准兼容的API接口。这种设计使得任何兼容标准API的客户端都可以无缝对接vLLM服务。DB-GPT作为一个企业级大模型开发框架,自然也支持这种标准的API调用方式。
配置方案
要实现DB-GPT调用本地vLLM服务,只需在环境配置中进行如下设置:
-
模型类型设置
将LLM_MODEL参数指定为chatgpt_proxyllm,这表示使用代理模式调用外部模型服务。 -
API密钥配置
虽然本地vLLM服务可能不需要认证,但仍需设置PROXY_API_KEY参数。可以设置为任意值,如sk-xxxx。 -
服务地址指向
PROXY_SERVER_URL参数需要指向本地vLLM服务的API端点,格式为:http://localhost:端口号/v1/chat/completions。注意端口号要与vLLM服务启动时指定的端口一致。 -
模型标识设置
PROXYLLM_BACKEND参数用于标识后端模型,虽然不影响实际调用,但建议设置为实际使用的模型名称,如NousResearch/Meta-Llama-3-8B-Instruct。
注意事项
-
端口一致性
确保DB-GPT配置中的端口号与vLLM服务启动参数--port指定的端口完全一致。例如,如果vLLM使用--port 8008启动,那么PROXY_SERVER_URL中的端口也必须是8008。 -
网络可达性
当服务部署在不同机器时,需要将localhost替换为实际IP地址,并确保网络连通性。同时要注意防火墙设置,避免端口被阻挡。 -
API兼容性
vLLM服务必须保持标准API的兼容性。建议使用最新版本的vLLM,以确保API接口的稳定性。
实现原理
这种集成方式的本质是API转发。DB-GPT通过标准的API格式将请求发送给本地vLLM服务,vLLM服务处理完请求后将结果返回给DB-GPT。这种设计有以下优势:
-
资源复用
避免重复加载模型,节省显存和计算资源。 -
解耦设计
模型服务与上层应用分离,便于独立升级和维护。 -
灵活扩展
可以轻松切换不同的后端模型服务,只需修改配置即可。
总结
通过这种代理调用方式,开发者可以充分利用已有的大模型服务基础设施,快速实现DB-GPT与本地vLLM服务的集成。这种方案不仅适用于开发测试环境,也可以应用于生产部署,是实现大模型服务复用的最佳实践之一。
对于初次接触的用户,建议先在本地环境进行测试,确保基础配置正确后再进行更复杂的集成开发。随着经验的积累,还可以进一步探索负载均衡、多模型路由等高级用法。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00