LMNR-AI TypeScript SDK 中类型导出的重要性与实践
在开发基于 TypeScript 的评估系统时,类型安全是保证代码质量的关键因素。LMNR-AI 的 TypeScript SDK 提供了一个强大的评估框架,但在实际使用中,开发者可能会遇到类型推导不足的问题。
问题背景
当使用 LMNR-AI SDK 创建评估函数时,常见的做法是将评估逻辑单独定义为一个函数,然后再传递给评估包装器。这种分离的写法虽然提高了代码的可读性和复用性,但却带来了类型信息丢失的问题。
例如,在文档示例中:
const evaluator = async (output, target) =>
(await output) === target.capital ? 1 : 0
这里的 output 和 target 参数会被 TypeScript 推断为 any 类型,失去了类型检查的保护。
类型安全的解决方案
1. 内联函数写法
最简单的解决方案是将评估函数直接内联到评估包装器中:
evaluate({
evaluators: {
checkCapitalCorrectness: async (output, target) =>
(await output) === target.capital ? 1 : 0
}
})
这样 TypeScript 能够自动推导出参数的正确类型,无需额外类型注解。
2. 显式类型注解
对于更复杂的评估逻辑,可能需要单独定义函数。这时可以使用显式类型注解:
const evaluator = async (output: string, target: { capital: string }) =>
(await output) === target.capital ? 1 : 0
3. 使用 SDK 提供的类型
更优雅的解决方案是 SDK 导出内部使用的类型定义,如 EvaluatorFunction,让开发者可以这样使用:
import { EvaluatorFunction } from 'lmnr-ai';
type MyOutput = string;
type MyTarget = { capital: string };
const evaluator: EvaluatorFunction<MyOutput, MyTarget> = async (output, target) =>
(await output) === target.capital ? 1 : 0
这种方式既保持了代码的清晰分离,又获得了完整的类型安全。
最佳实践建议
-
简单评估优先内联:对于简单的评估逻辑,优先使用内联函数写法,让 TypeScript 自动推导类型。
-
复杂评估使用显式类型:当评估逻辑较复杂时,单独定义函数并使用 SDK 提供的类型或显式类型注解。
-
保持文档示例类型安全:文档示例应展示类型安全的写法,避免让开发者复制粘贴后出现
any类型的问题。 -
充分利用泛型:评估系统通常涉及多种数据类型,合理使用泛型可以大大提高代码的复用性和类型安全性。
结论
类型安全是 TypeScript 的核心价值之一。通过合理使用内联函数、显式类型注解和 SDK 提供的类型定义,开发者可以在 LMNR-AI 评估系统中构建既安全又易于维护的代码。SDK 维护者也应确保导出所有必要的中间类型,为开发者提供完整的类型支持。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00