首页
/ 探索个性化搜索的未来:Word2vec + Scrapy + ElasticSearch + Django 搜索引擎

探索个性化搜索的未来:Word2vec + Scrapy + ElasticSearch + Django 搜索引擎

2024-09-19 16:44:56作者:晏闻田Solitary

在信息爆炸的时代,如何从海量数据中快速找到所需信息成为了一个挑战。今天,我们将介绍一个强大的开源项目,它结合了Word2vec、Scrapy、ElasticSearch和Django,为用户提供了一个高效、个性化的搜索解决方案。

项目介绍

本项目是一个集成了爬虫、数据存储、搜索和个性化推荐功能的搜索引擎系统。它通过Scrapy爬取数据,使用ElasticSearch进行数据存储和搜索,并利用Django提供用户友好的搜索界面。特别值得一提的是,项目中引入了Word2vec技术,通过分析用户的历史搜索行为,实现个性化的搜索结果排序,提升搜索体验。

项目技术分析

1. Scrapy2.3.0

Scrapy是一个强大的爬虫框架,能够高效地从网页中提取数据。在本项目中,Scrapy负责爬取知乎的答案和问题数据,并将这些数据存储到ElasticSearch中。

2. ElasticSearch7.9.1

ElasticSearch是一个分布式搜索和分析引擎,具有强大的全文搜索能力。项目中使用ElasticSearch存储爬取的数据,并通过其提供的Restful API对外提供搜索服务。

3. Django3.1.1

Django是一个高级的Python Web框架,用于快速开发安全和可维护的网站。在本项目中,Django负责构建搜索界面,并处理用户的搜索请求。

4. Word2vec

Word2vec是一种用于生成词向量的技术,能够捕捉词语之间的语义关系。在本项目中,Word2vec被用于个性化搜索,通过分析用户的历史搜索记录,调整搜索结果的排序,使得与用户兴趣相关的信息更容易被找到。

项目及技术应用场景

1. 个性化搜索引擎

本项目适用于需要个性化搜索功能的场景,如新闻网站、电商平台的搜索推荐系统等。通过分析用户的历史行为,系统能够提供更加精准的搜索结果。

2. 知识问答平台

对于知识问答平台,如知乎、Quora等,本项目可以帮助用户快速找到相关的问题和答案。通过Word2vec的个性化推荐,用户可以更容易地发现与自己兴趣相关的内容。

3. 数据分析与挖掘

对于需要进行大规模数据分析和挖掘的场景,本项目提供了一个高效的数据爬取和存储解决方案。结合ElasticSearch的全文搜索能力,用户可以快速找到所需的数据。

项目特点

1. 个性化搜索

通过Word2vec技术,系统能够根据用户的历史搜索行为,动态调整搜索结果的排序,提供更加个性化的搜索体验。

2. 实时数据展示

项目中使用了Redis来实现实时数据展示,用户可以查看当前已爬取的数据量以及热门搜索词,增强了系统的实时性和互动性。

3. 高效的全文搜索

借助ElasticSearch的强大搜索能力,用户可以快速找到所需的信息,搜索词还会被高亮标红,提升搜索结果的可读性。

4. 易于部署

项目支持本地运行和Docker部署,用户可以根据自己的需求选择合适的部署方式,降低了项目的使用门槛。

如何开始使用?

本地运行

  1. 安装ElasticSearch7.9.1,并配置ElasticSearch-head插件。
  2. 安装ElasticSearch-analysis-ik插件。
  3. 安装Redis。
  4. 克隆项目代码并配置相关信息。
  5. 执行爬虫脚本,开始爬取数据。
git clone https://github.com/mtianyan/FunpySpiderSearchEngine
cd FunpySpiderSearchEngine
pip install -r requirements.txt
scrapy crawl zhihu

Docker 运行

  1. 创建Docker网络。
  2. 克隆项目代码并启动Docker容器。
docker network create search-spider
git clone https://github.com/mtianyan/mtianyanSearch.git
cd mtianyanSearch
docker-compose up -d
git clone https://github.com/mtianyan/FunpySpiderSearchEngine
cd FunpySpiderSearchEngine
docker-compose up -d

访问127.0.0.1:8080,即可体验个性化搜索的魅力。

赞助

如果这个项目对你有帮助,不妨请作者吃包辣条吧!

mark


通过以上介绍,相信你已经对这个强大的个性化搜索引擎项目有了全面的了解。无论是用于个人项目还是商业应用,它都能为你提供高效、精准的搜索解决方案。赶快动手试试吧!

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5