探索个性化搜索的未来:Word2vec + Scrapy + ElasticSearch + Django 搜索引擎
在信息爆炸的时代,如何从海量数据中快速找到所需信息成为了一个挑战。今天,我们将介绍一个强大的开源项目,它结合了Word2vec、Scrapy、ElasticSearch和Django,为用户提供了一个高效、个性化的搜索解决方案。
项目介绍
本项目是一个集成了爬虫、数据存储、搜索和个性化推荐功能的搜索引擎系统。它通过Scrapy爬取数据,使用ElasticSearch进行数据存储和搜索,并利用Django提供用户友好的搜索界面。特别值得一提的是,项目中引入了Word2vec技术,通过分析用户的历史搜索行为,实现个性化的搜索结果排序,提升搜索体验。
项目技术分析
1. Scrapy2.3.0
Scrapy是一个强大的爬虫框架,能够高效地从网页中提取数据。在本项目中,Scrapy负责爬取知乎的答案和问题数据,并将这些数据存储到ElasticSearch中。
2. ElasticSearch7.9.1
ElasticSearch是一个分布式搜索和分析引擎,具有强大的全文搜索能力。项目中使用ElasticSearch存储爬取的数据,并通过其提供的Restful API对外提供搜索服务。
3. Django3.1.1
Django是一个高级的Python Web框架,用于快速开发安全和可维护的网站。在本项目中,Django负责构建搜索界面,并处理用户的搜索请求。
4. Word2vec
Word2vec是一种用于生成词向量的技术,能够捕捉词语之间的语义关系。在本项目中,Word2vec被用于个性化搜索,通过分析用户的历史搜索记录,调整搜索结果的排序,使得与用户兴趣相关的信息更容易被找到。
项目及技术应用场景
1. 个性化搜索引擎
本项目适用于需要个性化搜索功能的场景,如新闻网站、电商平台的搜索推荐系统等。通过分析用户的历史行为,系统能够提供更加精准的搜索结果。
2. 知识问答平台
对于知识问答平台,如知乎、Quora等,本项目可以帮助用户快速找到相关的问题和答案。通过Word2vec的个性化推荐,用户可以更容易地发现与自己兴趣相关的内容。
3. 数据分析与挖掘
对于需要进行大规模数据分析和挖掘的场景,本项目提供了一个高效的数据爬取和存储解决方案。结合ElasticSearch的全文搜索能力,用户可以快速找到所需的数据。
项目特点
1. 个性化搜索
通过Word2vec技术,系统能够根据用户的历史搜索行为,动态调整搜索结果的排序,提供更加个性化的搜索体验。
2. 实时数据展示
项目中使用了Redis来实现实时数据展示,用户可以查看当前已爬取的数据量以及热门搜索词,增强了系统的实时性和互动性。
3. 高效的全文搜索
借助ElasticSearch的强大搜索能力,用户可以快速找到所需的信息,搜索词还会被高亮标红,提升搜索结果的可读性。
4. 易于部署
项目支持本地运行和Docker部署,用户可以根据自己的需求选择合适的部署方式,降低了项目的使用门槛。
如何开始使用?
本地运行
- 安装ElasticSearch7.9.1,并配置ElasticSearch-head插件。
- 安装ElasticSearch-analysis-ik插件。
- 安装Redis。
- 克隆项目代码并配置相关信息。
- 执行爬虫脚本,开始爬取数据。
git clone https://github.com/mtianyan/FunpySpiderSearchEngine
cd FunpySpiderSearchEngine
pip install -r requirements.txt
scrapy crawl zhihu
Docker 运行
- 创建Docker网络。
- 克隆项目代码并启动Docker容器。
docker network create search-spider
git clone https://github.com/mtianyan/mtianyanSearch.git
cd mtianyanSearch
docker-compose up -d
git clone https://github.com/mtianyan/FunpySpiderSearchEngine
cd FunpySpiderSearchEngine
docker-compose up -d
访问127.0.0.1:8080
,即可体验个性化搜索的魅力。
赞助
如果这个项目对你有帮助,不妨请作者吃包辣条吧!
通过以上介绍,相信你已经对这个强大的个性化搜索引擎项目有了全面的了解。无论是用于个人项目还是商业应用,它都能为你提供高效、精准的搜索解决方案。赶快动手试试吧!
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









