Apollo iOS项目中Decimal数值精度问题的分析与解决
2025-06-17 07:10:53作者:尤峻淳Whitney
在iOS开发中使用Apollo GraphQL客户端时,处理Decimal数值类型可能会遇到意外的精度问题。本文将深入分析这个常见问题的成因,并提供专业的解决方案。
问题现象
开发者在使用自定义标量类型Decimal时,发现当发送6.99这样的数值时,后端实际接收到的却是6.990000000000002。这种精度偏差会导致业务逻辑出现错误,特别是在金融计算等对精度要求严格的场景中。
根本原因分析
-
浮点数精度问题:计算机使用二进制表示浮点数时,某些十进制小数无法精确表示,导致舍入误差。
-
自定义标量实现缺陷:当前实现中虽然使用了NumberFormatter进行截断处理,但在JSON序列化/反序列化过程中可能绕过了这个处理逻辑。
-
类型转换问题:在Double和Decimal之间的转换过程中没有完全控制精度。
解决方案
方案一:优化自定义Decimal标量实现
public struct Decimal: CustomScalarType, Hashable {
private static let formatter: NumberFormatter = {
let formatter = NumberFormatter()
formatter.maximumFractionDigits = 2
formatter.roundingMode = .halfUp
formatter.numberStyle = .decimal
return formatter
}()
public let value: Foundation.Decimal
public init(_ value: Foundation.Decimal) {
self.value = value
}
public init(_jsonValue value: JSONValue) throws {
if let stringValue = value as? String,
let decimalValue = Foundation.Decimal(string: stringValue) {
self.value = decimalValue
} else if let doubleValue = value as? Double {
self.value = Foundation.Decimal(doubleValue).rounded(2)
} else {
throw JSONDecodingError.couldNotConvert(value: value, to: Decimal.self)
}
}
public var _jsonValue: JSONValue {
return Decimal.formatter.string(from: value as NSNumber) ?? value.description
}
}
extension Foundation.Decimal {
func rounded(_ scale: Int) -> Foundation.Decimal {
var result = Foundation.Decimal()
var localCopy = self
NSDecimalRound(&result, &localCopy, scale, .bankers)
return result
}
}
方案二:直接使用Double类型
对于大多数场景,使用Double类型并配合适当的舍入策略可能更简单高效:
let value = 6.99
let roundedValue = (value * 100).rounded() / 100
最佳实践建议
-
明确精度需求:在金融等关键领域,应该使用专门的十进制算术库而非原生浮点类型。
-
前后端一致:确保前后端使用相同的精度处理逻辑,避免跨系统精度差异。
-
单元测试:为涉及货币计算的代码添加严格的单元测试,验证边界条件。
-
版本升级:保持Apollo iOS客户端为最新版本,以获得最佳稳定性和功能支持。
总结
处理数值精度是移动开发中的常见挑战。通过理解计算机数值表示的基本原理,选择适当的处理策略,并实施严格的验证机制,可以有效避免这类问题的发生。在Apollo iOS项目中,开发者应当根据具体业务需求,选择最适合的数值处理方案。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
191
2.15 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
967
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23