XTuner项目中DeepSpeed Zero3与模型保存机制解析
背景介绍
在XTuner项目中使用DeepSpeed Zero3优化技术进行大规模模型训练时,开发者可能会遇到模型保存机制的特殊现象。本文将深入剖析这一现象背后的技术原理,并介绍XTuner提供的解决方案。
DeepSpeed Zero3的模型保存特性
当使用DeepSpeed Zero3优化技术时,模型参数会被切片分布在不同的GPU上。这种分布式存储方式带来了模型保存的特殊表现:
-
优化器状态文件较大:每个
xx_optim_states.pt文件可能达到16GB大小,这是因为它们包含了恢复模型状态所需的完整信息。 -
模型状态文件较小:对应的
yy_model_states.pt文件可能只有404KB左右,这是因为在Zero3模式下,模型状态字典实际上是空的。
这种设计是DeepSpeed的固有特性,因为完整的模型状态可以从优化器状态文件中恢复出来。DeepSpeed内部正是利用这一机制来实现模型状态的恢复。
XTuner的解决方案
XTuner项目针对这一特性提供了专门的解决方案——HFCheckpointHook。这个钩子(Hook)的设计目的是为了生成Hugging Face格式的标准模型权重文件,方便后续使用。
实现原理
HFCheckpointHook通过以下方式工作:
- 在训练过程中定期收集分布在各个GPU上的模型参数
- 将这些参数重组为完整的模型状态
- 以标准的Hugging Face格式保存模型
使用方法
在XTuner的配置文件中添加以下内容即可启用此功能:
from xtuner.engine.hooks import HFCheckpointHook
custom_hooks = [
dict(type=HFCheckpointHook),
]
配置后,训练过程中会自动在work_dir/timestamp/hf_model目录下生成Hugging Face格式的模型文件,包括:
- 完整的模型权重
- 配置文件(config.json)
- tokenizer相关文件(tokenizer.json等)
技术优势
- 兼容性:生成的模型文件可以直接被Hugging Face生态系统中的工具加载使用
- 便利性:省去了从DeepSpeed格式转换的额外步骤
- 完整性:包含了模型推理所需的所有配置文件
实际应用建议
对于XTuner用户,建议根据实际需求选择保存方式:
- 训练过程中:使用DeepSpeed原生的保存机制,便于恢复训练
- 训练完成后:使用HFCheckpointHook生成最终模型,便于部署和推理
这种组合方式既能保证训练过程的稳定性,又能获得易于使用的最终模型。
总结
XTuner项目通过HFCheckpointHook的设计,巧妙地解决了DeepSpeed Zero3模式下模型保存的特殊性问题,为用户提供了更加友好的使用体验。理解这一机制背后的技术原理,有助于开发者更好地利用XTuner进行大规模模型训练。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00