FunASR项目中无人声音频处理时的标点模型报错分析
2025-05-24 03:37:18作者:房伟宁
问题背景
在语音识别系统FunASR中,当处理无人声音频时,如果配置了标点预测模型(punc_model),系统会出现运行时错误。具体表现为当音频中没有检测到人声时,系统仍然尝试对标点模型进行推理,导致类型不匹配的异常。
错误现象
使用FunASR的AutoModel处理无人声音频时,系统抛出以下错误:
RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.DoubleTensor instead (while checking arguments for embedding)
技术分析
错误根源
-
空文本处理逻辑不完善:当VAD(语音活动检测)未检测到人声时,系统生成一个包含单个空格的文本(" "),其长度为1,而非空字符串。
-
标点模型处理流程:当前代码逻辑中,只要文本长度不为0,就会进入标点预测分支。对于单个空格的文本,系统仍然会尝试进行标点预测,导致类型不匹配错误。
-
张量类型问题:标点模型期望输入的张量类型为Long或Int,但实际接收到的是Double类型的张量。
现有代码逻辑
if self.punc_model is not None:
if not len(result["text"]): # 检查文本长度是否为0
if return_raw_text:
result['raw_text'] = ''
else:
self.punc_kwargs.update(cfg)
punc_res = self.inference(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg)
raw_text = copy.copy(result["text"])
if return_raw_text: result['raw_text'] = raw_text
result["text"] = punc_res[0]["text"]
else:
raw_text = None
解决方案建议
方案一:完善空文本检测
修改空文本检测逻辑,不仅要检查长度,还要检查实际内容:
if self.punc_model is not None:
if not result["text"].strip(): # 使用strip()去除空白字符后检查
if return_raw_text:
result['raw_text'] = ''
else:
# 原有处理逻辑
方案二:修改文本生成逻辑
在VAD未检测到人声时,直接生成空字符串而非单个空格:
# 在生成result["text"]的地方修改
result["text"] = "" if no_speech else recognized_text
方案三:类型转换保障
在标点模型推理前确保输入张量类型正确:
if self.punc_model is not None and result["text"].strip():
# 确保输入类型转换
input_tensor = input_tensor.long() # 或.int()
# 后续处理
最佳实践建议
-
边界条件处理:在语音识别系统中,应该充分考虑各种边界情况,包括但不限于:
- 完全无声的音频
- 仅包含环境噪声的音频
- 极短语音片段
- 低质量录音
-
类型安全检查:在模型推理前,应该添加输入数据的类型检查,确保符合模型要求。
-
日志记录:对于异常情况(如空文本输入)应该记录适当的日志,便于问题追踪。
总结
FunASR在处理无人声音频时出现的标点模型错误,本质上是边界条件处理不完善导致的。通过改进空文本检测逻辑或修改文本生成策略,可以有效地解决这一问题。这也提醒我们在开发语音处理系统时,需要特别注意各种边界情况的处理,确保系统的鲁棒性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355