UTM虚拟机中运行x86二进制程序的解决方案
问题背景
在苹果M系列芯片的Mac电脑上使用UTM虚拟机运行Ubuntu 22.04 ARM64系统时,用户可能会遇到无法执行x86架构二进制程序的问题。典型错误提示为"x86_64-binfmt-P: Could not open '/lib64/ld-linux-x86-64.so.2': No such file or directory"。
问题分析
这个问题的根源在于ARM架构和x86架构的差异。M系列芯片采用ARM架构,而许多传统Linux程序是为x86架构编译的。当在ARM系统上尝试运行x86程序时,系统需要特殊的兼容层来转换指令集。
解决方案
1. 安装Rosetta兼容层
首先确保UTM虚拟机已正确配置Rosetta支持。Rosetta是苹果提供的x86到ARM指令转换技术,在UTM中需要特别启用。
2. 安装x86兼容库
在Ubuntu ARM64系统中执行以下命令:
sudo dpkg --add-architecture amd64
sudo apt update
sudo apt install libc6:amd64
这些命令将:
- 添加amd64架构支持
- 更新软件包列表
- 安装x86架构的基础C库
3. 配置binfmt支持
系统需要正确配置二进制格式识别,以便知道如何处理x86可执行文件。现代Ubuntu通常已包含必要的binfmt支持,但如有需要可以安装:
sudo apt install binfmt-support
进阶建议
-
性能考虑:虽然Rosetta提供了兼容性,但x86程序在ARM上的运行效率可能不如原生ARM程序。建议尽可能寻找ARM原生版本。
-
容器化方案:对于需要运行多个x86程序的情况,可以考虑在Ubuntu ARM系统中使用x86容器,如通过Docker运行x86容器镜像。
-
交叉编译:对于开发者,考虑将x86程序重新编译为ARM版本,以获得最佳性能。
注意事项
-
安装x86库会增加系统占用空间,请确保有足够的存储容量。
-
某些复杂的x86程序可能仍无法正常运行,特别是那些依赖特定硬件特性的程序。
-
定期更新系统以确保兼容层保持最新状态。
通过以上步骤,大多数x86 Linux程序应该可以在UTM虚拟机的Ubuntu ARM64系统中正常运行。如遇特定程序问题,可能需要额外安装该程序依赖的x86库文件。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00