Finetrainers项目v0.1.0版本发布:支持CogView4和Wan 2.1模型微调
Finetrainers是一个专注于大规模生成模型微调的开源项目,它为研究人员和开发者提供了高效、灵活的模型微调工具链。该项目支持多种前沿生成模型,包括文本到图像、文本到视频等任务。最新发布的v0.1.0版本带来了多项重要更新,特别是新增了对CogView4和Wan 2.1两大模型的支持。
新增模型支持
本次版本最引人注目的特性是新增了对两个重要生成模型的支持:
-
CogView4:这是智源研究院推出的多模态生成模型,能够处理文本到图像的生成任务。CogView4在6B参数规模下展现出强大的生成能力,特别适合需要高质量图像生成的场景。
-
Wan 2.1:这是一个专注于文本到视频生成的模型,1.3B参数规模使其在保持生成质量的同时具有较高的效率。Wan 2.1特别适合动态内容创作和视频生成任务。
预训练检查点发布
项目团队同时发布了基于这些模型的多个预训练检查点:
-
针对Wan 2.1模型,提供了两个视频生成方向的检查点:一个是通用视频生成"crush-smol"版本,另一个是专门针对3D高斯泼溅(3DGS)技术的优化版本。
-
对于CogView4模型,发布了基于Rider-Waite塔罗牌数据集的微调版本,包括标准版和经过sigma调整的变体版本。这些检查点特别适合需要特定风格图像生成的场景。
技术架构改进
v0.1.0版本在技术架构上做出了多项重要改进:
-
并行计算支持:重新全面支持Accelerate作为并行化后端,为不同规模的硬件配置提供了更灵活的分布式训练方案。
-
数据预处理优化:引入了可选的预计算功能,对于小型数据集可以显著提升训练效率。同时改进了远程数据集加载支持,使研究人员能够更方便地使用云端存储的数据。
-
兼容性增强:支持最新版本的datasets库(≥3.4.0),确保与Hugging Face生态系统的无缝集成。
关键问题修复
本次更新修复了多个影响用户体验的关键问题:
- 修正了Layerwise Casting在Wan模型上的工作问题,确保了混合精度训练的稳定性。
- 解决了LTX视频训练中batch_size大于1时的兼容性问题,提高了训练效率。
- 修复了模型CPU卸载功能的若干问题,优化了资源利用率。
开发者体验提升
项目团队在开发者体验方面也做出了多项改进:
- 重构了模型加载方法,使API更加清晰一致。
- 完善了文档系统,增加了更多实用示例和说明。
- 改进了本地数据集加载逻辑,支持更灵活的数据组织形式。
- 增加了对Webdataset格式的更好支持,便于处理大规模数据集。
项目生态建设
Finetrainers项目正在构建一个完整的生成模型微调生态系统:
-
模型支持:除了新增的CogView4和Wan 2.1外,项目还持续维护对其他主流生成模型的支持。
-
训练方案:提供从单GPU到大规模分布式训练的各种配置方案,适应不同规模的研发需求。
-
应用示例:通过发布针对特定场景(如塔罗牌生成、3D视频生成)的检查点,展示了技术的实际应用潜力。
v0.1.0版本的发布标志着Finetrainers项目在生成模型微调领域又迈出了重要一步。通过支持更多前沿模型、优化训练流程和提升用户体验,该项目正成为生成式AI研究和应用开发的重要工具。随着生态系统的不断完善,Finetrainers有望降低生成模型定制化的门槛,推动更多创新应用的诞生。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00