Dropbear SSH 2025.87版本发布:安全增强与后量子加密支持
项目简介
Dropbear是一个轻量级的SSH服务器和客户端实现,专为资源受限的环境设计。它相比OpenSSH具有更小的内存占用和更精简的代码库,非常适合嵌入式系统、路由器和其他资源有限的设备使用。Dropbear以MIT许可证发布,支持SSH协议的主要功能,包括安全远程登录、文件传输和端口转发等。
2025.87版本重要更新
1. 安全算法默认配置调整
新版本对默认安全配置进行了两项重要调整:
首先,默认禁用了SHA-1哈希算法。SHA-1已被证明存在安全弱点,现代加密实现通常都提供了更安全的替代方案。这一变更遵循了行业最佳实践,确保默认配置提供更强的安全性。
其次,客户端加密算法优先级进行了调整,现在优先选择AES-256而非AES-128,而chacha20-poly1305仍保持最高优先级。这一变更提供了更强的默认加密强度,同时保持了性能与安全的平衡。
2. 后量子加密支持
2025.87版本引入了两种后量子密钥交换算法,这是本版本最重要的安全增强:
sntrup761算法由Matt Johnston实现,基于Daniel J. Bernstein等人的研究成果。该算法能够抵抗未来量子计算机的攻击,保护当前加密通信不被未来的量子计算机解密。
ML-KEM算法由Loganaden Velvindron团队实现,基于libcrux库。这两种后量子算法的加入为Dropbear提供了面向未来的安全保障,确保即使在量子计算时代,SSH通信也能保持安全性。
需要注意的是,这些新算法会增加代码体积,但考虑到其安全价值,特别是sntrup761算法,开发者强烈推荐用户启用。
3. 服务器端功能调整
为提高安全性并减少攻击面,新版本在服务器端禁用了压缩解压功能(压缩功能仍被支持)。这一变更带来了两个好处:
- 减少了zlib库相关的潜在攻击面
- 节省了运行时内存
对于内存有限的嵌入式设备,这一调整尤其有价值。
4. 新功能与改进
新增了-D
服务器标志,允许管理员指定authorized_keys目录,这为密钥管理提供了更多灵活性。
改进了登录失败消息,现在包含远程主机信息,便于与fail2ban等安全工具集成,增强系统安全监控能力。
5. 问题修复
修复了在FUSE文件系统上写入主机密钥时的问题,解决了不支持硬链接的文件系统上的兼容性问题。
修正了错误消息截断问题,如主机密钥不匹配等情况下的错误信息现在能完整显示。
修复了curve25519代码中的ubsan(未定义行为消毒剂)问题,虽然不影响实际执行,但提高了代码健壮性。
升级建议
对于使用Dropbear的用户,特别是安全敏感环境下的部署,建议尽快升级到2025.87版本。新版本不仅提供了更强的默认安全配置,还引入了面向未来的后量子加密支持。对于资源特别受限的设备,可以考虑根据实际需求调整后量子加密算法的启用状态,在安全性和资源消耗之间取得平衡。
系统管理员应注意新版本中SHA-1算法的默认禁用可能影响与旧系统的兼容性,必要时可以通过配置重新启用(尽管不推荐)。同时,新的登录失败消息格式改进了与安全监控工具的集成,管理员可以相应调整监控策略以充分利用这一改进。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









