scikit-learn中调整互信息评分(AMI)的计算问题分析
问题背景
scikit-learn是Python中广泛使用的机器学习库,其中的聚类评估模块提供了多种指标来衡量聚类结果的质量。调整互信息评分(Adjusted Mutual Information Score, AMI)是一种常用的聚类评估指标,它通过比较两个聚类结果之间的互信息来评估它们的相似性,同时考虑了随机因素的影响。
问题现象
在使用scikit-learn的adjusted_mutual_info_score函数时,发现了一个有趣的现象:当输入的两个聚类结果完全相同时,对于样本量为2和4的情况,AMI得分意外地返回0而不是预期的1。具体表现为:
adjusted_mutual_info_score([1, 2], [3, 4]) # 返回0.0
adjusted_mutual_info_score([1, 2, 3, 4], [5, 6, 7, 8]) # 返回0.0
adjusted_mutual_info_score([1, 2, 3, 4, 5], [6, 7, 8, 9, 10]) # 返回1.0
技术分析
AMI计算公式
AMI的计算公式为:
AMI = (MI - E[MI]) / (max(H1, H2) - E[MI])
其中:
- MI是互信息
- E[MI]是互信息的期望值
- H1和H2分别是两个聚类结果的熵
问题根源
通过深入分析源代码,发现问题出在期望互信息(E[MI])的计算上。当样本量等于类别数(即每个样本自成一类)时:
- 对于样本量为2和4的情况,计算得到的E[MI]恰好等于实际的互信息MI
- 对于其他样本量,E[MI]会略大于MI
这导致在计算AMI时,分子(MI - E[MI])为0,而分母由于浮点精度问题变成一个极小的正数(约2.22e-16),最终结果为0。
数值稳定性问题
浮点运算中的精度问题是导致这一现象的深层原因。在样本量为3时:
MI = 1.0986122886681096
E[MI] = 1.0986122886681098
虽然两者极其接近,但由于E[MI]略大,分子为负,分母也为负,最终结果为1。
解决方案建议
-
数值稳定性处理:可以借鉴scikit-learn中已有的处理方式,对分子和分母都进行截断处理,避免除以极小数的情况。
-
公式修正:考虑在特殊情况下(如完全相同的聚类)直接返回1,绕过复杂的计算过程。
-
文档说明:在函数文档中明确说明这种边界情况的行为,避免用户困惑。
对实际应用的影响
虽然这一问题只出现在特定的边界情况下,但它提醒我们:
- 聚类评估指标在小型数据集上的表现可能不稳定
- 在使用AMI等指标时,需要了解其数学原理和可能的边界情况
- 对于关键应用,建议结合多种评估指标进行综合判断
总结
scikit-learn中的AMI计算在样本量为2和4时出现的异常行为,揭示了数值计算中精度处理的重要性。这一问题虽然不影响大多数实际应用场景,但对于理解聚类评估指标的行为和实现细节提供了有价值的案例。在未来的版本中,通过适当的数值稳定性处理,可以进一步提升该函数的鲁棒性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00